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1.0 SUM_LRY

During the detailed design effort for the IAPSA II contract, a

candidate architecture design based on AIPS fault-tolerant system building

blocks was evaluated for Its ability to meet the demanding performance and

reliability requirements of a flight-critical system. This effort was

conducted in accordance with the IAPSA II prevalidation methodology. This

methodology was defined and an advanced fighter configuration was selected

during an earlier phase of this contract. A mission analysis of the high-

performance, multirole, twin-engine fighter was conducted to define a set

of flight-critical requirements for this study during the earlier effort.

The preliminary evaluations showed that the candidate needed some

refinements to meet the system requirements. It is significant that

several weaknesses in the candidate architecture became apparent that were

not evident in the initial rough performance and reliability calculations.

This effort shows that it is both possible and preferable to perform

detailed evaluation of concepts based on specifications before committing a

project to a hardware and software design.

A refined configuration was evaluated for reliability using improved

Markov modeling techniques. Although this proved to be superior to earlier

evaluation techniques, improvements are needed in the handling of very

large systems with a hlgh degree of interdependency.

A set of objectives and experiments was defined for testing critical

performance characteristics of the architecture. A scaled down version of

the architecture (small-scale system) was built using existing proof-of-

concept AZPS building-block hardware and software components. It embodies

key features of the IAPSA II design and was used to explore critical issues

identified as a result of the performance and reliability modeling effort.

Experimental data were obtained and correlated with the performance

estimates obtained during the preliminary simulation effort.





2.0 33q'rRODUCTLON

This is the fourth and final contractor report associated with the

IAPSA II effort. This report summarizes the prevalidation methodology and

the evaluation of the candidate architecture and refined configuration in

terms of reliability and performance. The report concludes with a

discussion of the detailed experimental results obtained with a small-scale

system that was developed to capture the fundamental characteristics of the

IAPSA II design.

The IAPSA II analysis and design effort is the continuation of a

research and technology program investigating the benefits of integrated

system architectures and demonstrating the properties of promising

architectures by experimentation in the NASA Langley Avionics Integration

Research Laboratory (AIRLAB). Work under previous contracts achieved the

following: (1) defined major characteristics of an Integrated Airframe

Propulsion Control System Architecture, (2) proposed several candidate

system configurations, and (3) selected one of the configurations as a

basis for a preliminary system design.

The overall objectives of the IAPSA II program are (1) analysis and

detailed design of an integrated control system architecture that satisfies

stringent performance and reliability requirements, (2) an analytical and

experimental approach for evaluating the architecture, and (3) installation

and limited experimentation on a small-scale system test specimen in

AIRLAB.

The first phase of this contract defined an advanced fighter

configuration for analysis, a prevalidatlon methodology, and a candidate

architecture based on the use of fault-tolerant system building blocks.

The advanced fighter is a twin-engine design with a high degree of coupling

between the propulslon system and the airframe. A mission analysis was

conducted on mission scenarios for this fighter to derive the control

system requirements. These requirements formed the basis for the design of

a control system architecture.

The methods used to design and validate the control system architecture

are as important to the IAPSA II contract as the architecture itself. The

PRECED',NG PACE CL;",.,:]( _'_;OT FILMED



prevalidation methodology emphasizes the early evaluation of key

performance and reliability characteristics of system concepts using models

of system behavior. This early evaluation ensures that the system design

is capable of meeting critical requirements. System concept changes needed

to meet these requirements can then be made early when they have the

greatest performance benefit and the least Impact on schedule and cost.

Key performance and reliability assumptions identified by the modeling

effort will be tied to activities to validate the implemented system.

A candidate system architecture defined by our subcontractor, Charles

Stark Draper Laboratory (CSDL), was evaluated to exercise the methodology.

An overview of the definition of the candidate system is presented in

section 3.5. Reliability and performance issues were the main attributes

used in evaluating the candidate architecture. The reliability evaluation

effort was accomplished in four parts: (1) system operating details and

key reliability assumptions were defined to support system modeling; (2) a

failure analysis was conducted, based on the key reliability measures

(safety, mission success, etc.), to define how the system fails; (3) the

ASSIST program was used to create a corresponding failure model; and (4)

the Semi-Markov Unreliability Range Evaluator (SURE) model was executed and

its results used to indicate the candidate's strengths and weaknesses. The

reliability effort is covered in section 4.2.

The performance characteristics of the candidate architecture were

evaluated in normal and failure situations as required by the prevalidation

methodology. The evaluation effort consisted of four major parts: (i) the

key application sequencing and control options in the candidate system were

defined; (2) critical performance issues and simulation experiments were

defined for the candidate configuration; (3) a model of the critical

system workload and its use of the configuration elements was built using

the Discrete Event Network (DF_/ET) tool; and (4) the DENET experiments were

executed and the results analyzed. This performance evaluation effort is

described In section 4.3 of this report.

The candidate system evaluation shoved that it was not capable of

meeting the system requirements. The predicted safety and mission

unreliability values exceeded the system constraints. Additionally, the

4



predicted timing needs of the major control functions executed on the

concept system did not leave adequate growth capability. The flight

control group application workload strained the system capacity in both

computing and II0 activity. As a result, the IAPSA II system concept was

refined to improve its performance and reliability. The refined candidate

architecture is described in section 4.4.

Section 5.0 presents the results of experiments with the small-scale

system. The small-scale system embodies key features of the IAPSA II

design that were evaluated in a limited experimentation effort. The

limited effort explored a set of critical aspects of the IAPSA II candidate

architecture that was identified as a result of the performance and

reliability modeling effort. The small-scale system consists of existing

proof-of-concept AIPS buildlng-block hardware and software components. Two

kinds of experimental data were obtained. First, certain performance

assumptions used during the preliminary simulation effort were evaluated.

Second, certain timing characteristics critical to successful operation in

normal and faulted situations were measured experimentally. Several

observations made during the small-scale system integration and testing

effort are discussed in section 5.6. Hardware and software difficulties

exposed durin E the integration testing are included.

Section 6.0 covers general conclusions based on the IAPSA II design and

validation effort in its entirety. Our experience with the prevalidation

methodology and the use of fault-tolerant building blocks in system design

are covered.

5





3.0 PREVALIDATION METHODOLOGY AND CANDIDATE SELECTION

3.1 FREVALIDATION METHODOLOGY

Advanced vehicle management systems incorporating integrated flight and

propulsion control, flight trajectory management, control surface

reconfiguration, air-data measurement, inertial measurement, electrical and

hydraulic power control, and utility management must offer significant

improvements in life cycle cost while exhibiting operational characteristics

that enhance utility and safety. These systems must provide aircraft

availability, must be reliable, maintainable, supportable, and affordable, and

must furnish improvements in both capability and survivability. In

particular, integrated airframe and propulsion control systems will allow

significantly improved performance through better integration of the control

functions associated with aerodynamic surfaces, inlets, engines, and vectoring

and reversing nozzles.

The functions being implemented are flight critical; if the system fails,

there is a high probability of loss of aircraft. To achieve high reliability,

the hardware and software must be fault tolerant. Fault tolerance requires

protective redundancy combined with fault detection, isolation, and system

reconfiguration. Rapid advances in microelectronics and software technology

offer the system architect many implementation alternatives. However, as

demonstrated by recent military aircraft experience, the resulting hardware

and software architectures are extremely complex and are very difficult to

validate in terms of reliability and performance. Current design approaches

are inadequate for this task and limit the performance and cost effectiveness

that can be achieved. Methodologies and supporting tools must be available

for the system architect to evaluate candidate systems during the development

cycle.

For most present-day embedded computer systems with high reliability, the

hardware and software resources for achieving fault tolerance have greatly

exceeded those dedicated to the application function. This has led to

excessive system cost. Failures in the systems have been very complex because

of the technical approach used. As the reliability requirements become even
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more stringent, the increase in system complexity due to fault tolerance must

be minimized and the system reliability and performance validated with

acceptable cost and on a predictable schedule.

Of central importance to these advanced systems is how well the systems

perform under failure conditions. The availability of the control functions

is critical to safe flight and mission success. Failure conditions that

prevent safe flight must be highly unlikely, and failure conditions that cause

mission abort or adversely affect the aircraft's ability to survive in a high-

threat environment must be unlikely. Finally, the overall system design must

accommodate the improvements, changes, or growth in capabilities that

experience has shown to be typical during the operational life of weapon

systems.

To address these issues, a prevalidation methodology has been developed

under the IAPSA II program as a formal procedure that allows the designer to

proceed logically through the development cycle with supporting tools for each

phase of the cycle. The methodology allows the designer to address

performance and reliability questions early in the design process by modeling

the integrated system behavior. The control law requirements are derived by

analyzing the intended operational use of the system in representative mission

scenarios. Once control laws have been defined to satisfy the system

operational needs, concepts that implement the system functions are developed.

These implementation concepts are then analyzed in terms of meeting

performance and reliability requirements.

The defined prevalidatlon methodology was used to design the IAPSA II

integrated flight and propulsion control system architecture.

3.1.1 IAPSA II Aircraft

An advanced fighter configuration (an internal Boeing study configuration,

ref. 1), shown in figure 3.1-1, was selected as the application aircraft for

the current study. The aircraft is a high-performance twin-engine design with

a high degree of coupling between the propulsion system and the airframe.

This aircraft uses multiple redundant control surfaces, variable geometry

inlets, and 2D-vectored thrust nozzles. The configuration is capable of

multiple advanced air-to-ground and air-to-air missions and uses advanced
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Figure 3.1-1. IAPSA II Advanced Fighter



control concepts such as control system reconflguratlon and wing camber

control. The flight control actuators used for this study have associated

smart electronics, allowing for local redundancy management.

The IAPSA II SOW specified that the IAPSA II system shall contribute a

loss-of-aircraft failure probability of less than 10-7 for a 3-hr flight.

Similarly, the system contribution to mission failure probability must be less

than 10-4 for a l-hr mission.

These constitute the top-level reliability-related requirements on the

system. The top-level performance requirement on the system is that it

provide 100% growth capability for the defined functions. The next subsection

summarizes the steps of the prevalidation methodology used to design an

integrated control system for the aircraft.

3.1.2 Prevalldation Methodology Overview

The rapid expansion of digital avionics technology has dramatically

increased the number of implementation alternatives available to the system

designer. These implementation alternatives, together with the special

concerns that arise because of demanding functional and reliability needs, can

only be addressed efficiently with a methodology that embodies a rigorous

systems engineering approach. To design a cost-effectlve system, the system

designer must be able to quantify the effects of different system design

alternatives. With respect to the phases of a typical system life cycle, as

shown in figure 3.1-2, the appropriate time to evaluate system-level

alternatives is during the concept definition phase. Changes made during this

phase have an enormous impact in terms of performance improvement versus cost

of the change. Additionally, errors in requirements that become evident

because of early system analysis can be corrected with a much smaller impact

on cost and schedule than if corrected later in the life cycle. In each life

cycle phase a combination of analysis and synthesis steps is used to develop

the design in progressively greater detail. This cycle of requirements,

design, and specifications is repeated until the lowest level of the system

hierarchy is reached.

To support the early phases of life cycle, a prevalidation methodology has

been developed that places particular emphasis on traceability. The
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prevalidation methodology shown in figure 3.1-3 illustrates the iterative way

a system design typically evolves. The approach addresses performance and

reliability questions early in the design process by modeling the integrated

system behavior.

The top-down approach ensures that the system requirements drive the

resulting design. First, the functional alternatives are defined based on the

mission requirements. Second, system implementation alternatives are

developed that perform the required system functions. Third, the resultin E

candidate architectures are evaluated using performance and reliability tools

to analyze their behavior in normal and failed situations. The evaluation

effort leads to concept refinement and, ultimately, to selection and

specification of a system design.

A brief discussion of the various phases of the methodology follows.

Mission Requirements. Figure 3.1-4 illustrates how a mission scenario is

decomposed into mission segments and how drivers are formulated for these

segments. These drivers bridge the gap between the mission and the resulting

control system requirements. They also serve to explain, relate, expand, or

constrain the functional requirement. The information is organized into a

matrix, as shown in figure 3.1-4, with all the control system requirements

listed in the right column. A typical entry for the matrix might be the

following:

Mission event Driver S_stem requirement

Climbout Improve ride quality

Reduce structural

fatigue

Actively reduce airplane

dynamic loads due to gust

At this phase in the design methodology, a control system is desiEned to

satisfy the control system requirements.

System Functions. The control system functional requirements and drivers

guide the organization of the various control functions. These control

functions are separately described in terms of sensors and effectors used,

accompanied by requirements for cyclic rate of execution. With a general
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multivariable control analysis and design tool package, closed-loop analysis

can be used to estimate parameters such as rate, word length, dead band, rate

limits, hysteresis, transport delays, sensor and actuator characteristics, and

the impact on system margins. The key requirements in the area of sensing

include (1) what must be measured or computed based on raw measurements, (2)

the effect of sampling rate and transport delay on the control law

performance, (3) the effect of measurement accuracy on the control law, and

(4) the effect of measurement errors and failures on the control law.

Attributes associated with the actuators must also be determined.

These tools can also be used to derive data transmission rates, processor

throughput requirements, and major interface requirements. In addition,

functional failure effects on vehicle safety, mission success, and

availability are used to determine the level of failure protection required.

These attributes result in a specification for the control system. The next

step in the process is to design an architecture that satisfies the control

system specifications.

System Architecture Candidate. From a functional viewpoint a system

architecture concept defines three key characteristics of the system: (1)

partitioning (allocation of system functions or processes to partitioned

elements); (2) data distribution (how the configuration elements are

interrelated from a signaling point of view); and (3) failure protection (how

the critical system functions are preserved under element failure conditions).

These characteristics are not independent, and choices in one area may

preclude certain choices in another area.

Each implementation alternative designed to satisfy the control system

requirements must be described in enough detail to allow the subsequent

analysis efforts. The key to a cost-effective design is the synthesis and

evaluation of a sufficient number of alternatives. Descriptions of these

alternatives must clearly define the above key characteristics to be

effective. The descriptions must be concise so that the effort to document

candidate designs does not predominate the design effort. Description of

these alternatives becomes, in effect, a mlnl-specification for each

candidate. Once a set of alternative designs has been adequately described,

the next step is evaluation of the candidates.
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Performance and Reliability Analysis. The performance and reliability

evaluation of the design concept is the key step in the approach. The goal is

to identify weaknesses and strengths in the alternative configurations. These

early evaluations involve tools that use high-level system behavior models to

ensure that the system design can satisfy the requirements. The modeling

effort has several benefits. Creation of the models focuses the design team's

attention on specific aspects of the system operation. This exposes missing

requirements and implicit design assumptions. (The system concept

descriptions must contain enough detail to ensure that the performance and

reliability models can be defined.) The evaluation will demonstrate that the

design meets the critical system performance requirements before the more

detailed development phase begins. The following paragraphs describe the

performance and reliability evaluation effort in greater detail.

Performance Analysis. The first step in this analysis is to characterize

the workload demands on the control system. The allocation of processing

functions to computing sites and the allocation of sensors and actuators to

input/output networks allows definition of the system workload. The workload

is defined in terms of a sequence of subfunctions arranged in prerequisite

order necessary to implement each control function. The focus is the

processing workload required for control law computation and the data transfer

demands necessary for sensor sampling and commanding actuator movement. This

workload has many associated timing constraints, including control cycle

frequency and transport delay limits from each sensed parameter to each

control actuation. There are also requirements for the jitter allowed in the

periodic execution of control cycles.

The IAPSA II system, for example, has several control functions, each

requiring cyclic execution at a different rate. From the application

perspective, the various control functions appear to compete for use of system

resources to accomplish their function. The system-level mechanism for

allocating the system's shared resources (for processing, data transfer, etc.)

is therefore of fundamental interest in real-tlme performance analysis. In

most computers, any centralized sequencing and control actions involve

hardware and special software, usually organized as part of the system

executive or operating system; this must be included in the performance

analysis.
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The use of performance tools is relatively new to the field of flight

system analysis. Discrete event simulations are generally used for simulating

those systems for which time is not an explicit variable in the simulation

equations, such as bus contention, word length considerations, operating

system design, and reconfiguration strategies for fault-tolerant systems. As

part of the IAPSA II study, various performance tools were evaluated and one

selected to support the prevalidation methodology. This effort is described

later in this section.

Reliability Analysis. Concurrent with the performance analysis, a failure

analysis of the various candidate system concepts is performed to define the

reliability models. The results of this analysis must uncover the

circumstances in which the ability of the system to perform its functions is

affected from either a mission or safety point of view. Critical systems use

redundant elements to guarantee that system operation can be maintained after

a fault has occurred. High-performance redundancy management processes are

necessary to control the use of the redundant elements and to prevent faults

from affecting system performance.

The redundancy management process is responsible for detecting failures,

identifying which element or group of elements has failed, and taking action

to reconflgure the system so that faulty elements can have no further effect

on the system.

Reliability modeling of fault-tolerant systems is difficult because of the

complex behavior of the redundancy management processes. A "perfect" process

would be able to take the correct action instantaneously when faults occur,

but real processes take time to make decisions and can take incorrect actions.

Many processes use voting to identify faults by comparing outputs of redundant

elements. These processes must cope with normal sensor and actuator

mismatches, disturbances, and maneuvering characteristic of the operational

environment. Other forms of redundancy management processes rely on special

checks of the known characteristics of the hardware devices to indicate

failure. In general, all processes have limited capabilities when compared to

a perfect process. For fault-tolerant systems, the imperfect redundancy

management performance usually dominates the reliability estimate.
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Additionally, the sequence and timing aspects of the faults are important

when redundancy management behavior is modeled. For this reason most

reliability tools designed for fault-tolerant systems use Markov model

approaches. As part of the IAPSA II study, reliability tools were evaluated

to support the prevalidation methodology. This evaluation is described next.

3.2 REIJABILIT_TOOL E_ALOATION

A special task was performed early in this study to evaluate two

reliability prediction tools that had been developed for analysis of fault

tolerant systems. These tools are the Computer Aided Reliability Estimator,

CARE III (ref. 2), and the Semi-Markov Unreliability Range Evaluator, SURE

(ref. 3). Both tools were sponsored by NASA Langley Research Center. An

attempt was made to evaluate the Hybrid Automated Reliability Predictor, HARP

(ref. 4), but the version available in late 1985 could not support the

evaluation study.

The screening task approach was to analyze a single representative system

architecture using both tools. The purpose was to determine the relative

strengths and weaknesses of the tools in an analysis environment.

During the concept definition phase of a design a system architecture is

defined primarily in functional terms. From a functional standpoint, a system

architecture defines three key characteristics: function partitioning, data

distribution, and failure protection. These aspects are not independent;

changes in an architecture viii affect more than one area. There are many

alternatives used by system designers in these three areas. Therefore, a

general purpose rellabiilty tool must be able to model the effect of these

alternatives. Since failure protection is central to flight-critical

architectures, the tool evaluation effort emphasized the analysis of a wide

range of redundancy management strategies.

3.2.1 Flight-Critical SyatmEx_ple

As stated previously, the approach used in selecting a reliability tool was to

apply the tools to a fllght-crltlcal architecture example. Although the

example concept was representative, it contained a mixture of lower level

concepts that would not typically appear in a single system. (For example,
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the sensor computers are based on a self-checking-pair philosophy while the

control law computers are redundancy managed by downstream elements.) In this

way the example architecture provided a more thorough exercise of reliability

tool capabilities.

The flight-critical system example implemented a pitch control function

that provided pitch maneuvering capabilities over the normal flight envelope

for a relaxed stability aircraft. It is therefore critical to flight safety

at all times. To limit the scope of the study, the stabilizer control

function was not included and the fault analysis effort was restricted to the

flight safety condition for the normal control function. A backup control

system was not modeled.

Figure 3.2-I shows the resulting system and includes nomenclature for the

system elements. A more detailed description of the system, its various

redundancy management concepts, and the system failure analysis is presented

in reference 5.

3.2.2 Evaluation Results

SURE and CARE III reliability models were created for the flight-critical

system example. Details of this effort are discussed in reference 5. The

tool evaluation did not cover certain aspects of a typical design effort, such

as design iterations, different failure conditions or sensitivity studies.

Similarly, certain aspects of fault-tolerant systems were not modeled, such as

transient or intermittent faults. However, as a result of the evaluation some

key differences in the programs became clear.

Characteristics of the tool evaluation reliability models are shown in

table 3.2-i. The table shows that the SURE program was able to model more

kinds of failure vulnerability than the CARE III program. It was noted,

however, that the SURE modeling effort was very time consuming. The

flexibility that alloys capture of widely varied behavior causes a

corresponding additional effort to validate the resulting _custom _ model. By

comparison, behaviors that areemulated by proper selection of parameters in

the more rigidly defined CARE III fault-handling model should result in a

validated model.
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Figure 3.2-1. Flight-Critical System Example
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Table 3.2-1. Mode/Status

Modeling SURE CARE III
i

ADS
• Sensor exhaustion

• Nearly simultaneous faults

• Self-monitor failure sequence
dependence

• Self-monitor second failure

coverage

• False sensor isolation

/

,f

/

Modeled as constant fractional

parameter

BMS

• Sensor exhaustion

• Gyro and accelerometer
dependency on data link

• Nearly simultaneous faults

• False sensor isolation

IRADC
• Element exhaustion

• Dependence on VS bus

• Dependence on CLC bus terminal

PCS
• sensor exhaustion

• Nearly simultaneous faults

• Self-monitor failure sequence
dependence

• Self-monitor second failure

coverage

• False sensor isolation

• Dependence on I/S bus

• Dependence on computer bus
terminal

/

/

/

Simultaneous sensor faults

Lumped failure rate of all series
elements

,f

Not modeled

/

/

Modeled as constant fractional

parameter

,t"

/

Not modeled

/

/

Not modeled

Not modeled

Not modeled

Sensor exhaustion dependence on
data link sequence not modeled

Result approximated by using
independent set of links for gyros
and accelerometers

Results must be adjusted clue to
modeling data link faults as seperate
fault type

Not modeled

!Same as SURE

,(

/

/

,f

Not modeled

Not modeled

Not modeled

,r
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Table 3.2-I. Model Status (Continued)

Modeling SURE CARE III

CLC
• Element exhaustion

• Nearly simultaneous faults

Surface control
•Actuation channel exhaustion

• Two-channel failure due to

disengage device failure

• Two-channel failures due to
undetected actuation faults

• Dependence on I/S bus

• Dependence on CLC bus terminals

/

/

,{

.f

/

/

Not modeled

"Cold spare" modeled with same
failure rate as active element

/

/

/

Not modeled

/

/

22



Both programs had some problems handling the dependency aspects of the

flight-critical system example. The full dependency was much easier to model

using the CARE III fault tree and multiply occurring event capability. A

problem was that it was necessary to decompose the stages of replicated

elements into individual modules. In the SURE effort, dependency was handled

by building a large combined model out of the small section models. This step

caused the number of states and program execution time to increase

geometrically.

The SURE tool was selected for use during the detailed design phase of the

IAPSA II study, primarily based on the flexibility shown during the tool

evaluation effort. The ability to handle novel redundancy management

strafegies was considered valuable enough to justify any additional model

validation effort. Development of practical modeling techniques to minimize

this additional effort then became a priority during the architecture

evaluation effort.

3.3 PERFOP_CE TOOL EVALUATION

Another key aspect of the prevalidation methodology is the evaluation of

the critical performance aspects of candidate architectures. The ability of a

flight critical system to meet the critical application timing needs during

normal operation and during special situations such as mode changes or fault

recovery must be evaluated.

Functional simulations which represent the key characteristics of the

system candidate were investigated for this purpose. Methods based on

discrete event simulations where the key system actions are represented as a

sequence of events appeared most promising. Eight available discrete event

performance tools were evaluated to support the methodology. The key

requirements in evaluating the tools were (1) ability to implement key

algorithms, (2) flexibility of representation, (3) modularity, and (4) ease

and flexibility of data collection and data analysis.

Test case evaluations were made of the Adas, Network 2.5, T-Prolog, and

Discrete Event Network (DENET) performance tools. The test case covered the

operation of a small portion of a reconflgurable network. As a result of the

evaluation, the DENET simulation language developed at the University of
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Visconsin was chosen as the IAPSA II analysis tool. This selection was based

on its capability to include algorithms vithln a flexible simulation

environment.

The next section describes the first step in applying the prevalidation

methodology to the IAPSA II aircraft.

3.4 NISSIONREOUII_S AND SYSTEM FUNCTIONS

The IAPSA II control System design was derived through a top-down method

that develops control system requirements from mission requirements. A

representative control system was chosen to meet the derived requirements.

Representative control system modules and flight management system (FM$)

modules were defined and requirements were allocated to them. Analytic

methods were derived and used to estimate memory and throughput requirements

for the representative control system modules.

3.4.1 Mission analysis

The mission requirements for an advanced fighter are best expressed with a

set of possible mission scenarios. These scenarios describe the intended use

of the advanced fighter and its operational environment. The mission

scenarios were examined by individual segments to determine common or related

elements.

As discussed earlier, the IAPSA II study aircraft is capable of multiple

advanced missions. The missions include supersonic, low-level penetration;

subsonic weapon delivery; subsonic alr-to-alr combat; various air-to-ground

scenarios; and supersonic, hlgh-level cruise and weapon delivery.

Our mission analysis experience indicates that there is a great deal of

overlap in mission requirements derived from the multiple missions of an

advanced fighter aircraft. The baseline mission shown in figure 3.4-i is

based on a battlefield interdiction mission. The segments of this baseline

mission cover most of the segments of the multiple missions with a few

exceptions. Two alternative missions to the baseline, a counterair mission

and a high supersonic alr-to-ground mission, provide additional mission

segments which completely cover the mission requirements.

24



@ ®
A

Takeoff
Climb
Cruise
Descent

Penetration ingress
Combat

Egress
Climb
Cruise
Descent

Landing

®
9

L
v

®

A
115 nmi

Taxi, takeoff, establish climb
Climb on course, intermediate power, to 34,000 1t,Mach 0.85
Cruise at Mach 0.85 at 34,000 ft
Descend and accelerate to Math 1.2
Penetrate at sea level at Mach 1.2

Drop ordnance, rail power at Mach 0.8, 3,000 ft
Math 1.2 at sea level
Climb and decelerate to Mach 0.85 at 34,000 ft
Cruise back Mach 0.85 at 34,000 ft

Descend to landing approach
Land, usable runway is 1,500 to 2,000 !t
Total mission time = 0.75 hr

Figure 3.4-1. Battlefield Interdiction Mission (Baseline)
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The mission segments were analyzed to derive the control system

requirements. Figure 3.1-4 shows how the mission segments are examined

individually and how drivers are formulated for these segments. These drivers

bridge the gap between the mission event and the resulting control system

requirement. The information is organized into a matrix as shown in

figure 3.1-4 with all the control system requirements listed in the right-hand

column.

Table 3.4-1 presents the analysis results for the baseline mission. The

numbered segments correspond to the numbers of the segments in figure 3.4-1.

Table 3.4-2 shows the analysis of the alternative mission-unique segments.

These matrices summarize the control system requirements that are necessary to

satisfy the mission requirements.

3.4.2 Control System Functional Grouping

The control system functions were grouped in either the primary flight

control system (PFCS) or the FMS. The PFCS functions provide inner loop

stability and control and follow manual or automatically generated trajectory

commands. The FMS functions are limited to generating the trajectories that

are then used to provide commands to the PFCS. The PFCS functions are divided

into eight representative control modules. These modules use the actuators

and sensors shown in tables 3.4-3 and 3.4-4.

The FMS functions are organized into four main parts. These partitions

are 3D and 4D trajectory generation, autoland trajectory generation, flight

envelope generation, and combat trajectory generation.

3.4.3 Control System Computational Sizing gstimtes

Computer sizing estimates were generated based on the representative

flight control modules. An important aspect in estimating computer workloads

for future systems is the uncertainty involved vlth implementation of the

control systems. To reflect this uncertainty, scale factors were included as

multipliers to the memory and throughput estimates.

The scale factors listed in table 3.4-5 represent high and low multipliers

for the three categories of data memory, code memory, and throughput. These

scale factors are generated for the PFCS and FMS estimates and are discussed

in more detail in reference 5.
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Table 3.4-1. Analysis of Baseline Mission Segments

Mission segment Control action Driver Control system requirements

Q
Takeoff

Q and {_
Climb

Q and Q
Cruise

Q and Q
Descent

Accelerate to

takeoff speed
and depart
runway

Ascend to
cruise altitude

and speed

Cruise_olter

Descend to

penetration
level and
accelerate to

required speed

Short ground roll (less than
1,500 ft)
Battle damage to runway
Low maintenance airfield

Narrow runway
Crosswind conditions

Ride quality
Ease pilot workload
Time constraints

Fuel consumption

Ease pilot workload
Fuel consumption
Total temperature limitations
Ride quality
Minimize drag

Fast descent

Ease pilot workload
Rapid change in specific energy
Ride quality
Spiral approach
Control engine stall margins

Engine power setting
Nosewheel steering
Set T/O trim

Envelope limiting
Set runway centerline
Set envelope limits

Engine power setting
Manual trim

Speed control
Envelope limiting
Gust alleviation

Trajectory control
Auto trim

Generate envelope limits
Climbout speed setting
Trajectory generation
Compute minimum time climb
Target altitude

Generate trajectories

Speed control
Flutter suppression
Range/endurance/time optimization
Manual trim
Automatic trim

Envelope limiting
Control lift
Gust alleviation

Trajectory control

Cruise speed setting
Target attitude
Generate BVR trajectories
Generate envelope limits

Speed control
Control lift
Gust alleviation

Flutter suppression
Trajectory generation
Generate envelope limits
Manual trim
Automatic trim

Envelope limiting
Trajectory control

Engine power setting
Target altitude
Blended engine/inlet control
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Table 3.4-1. Analysis of Baseline Mission Segments (Continued)

Mission segment Control action Driver Control system requirements

TF/TNOAQ and 0
Low level

ingress/egress

®
Combat

Pop up/stores
release/damage
assessment

Final approach
and touch down

with roll to stop

Stay at minimum altitude
Supersonic speeds
Precise tracking
Lateral maneuvering through
terrain

Ease pilot workload for mission
preparation
Threat evasion
Survivable controls

Quick. hard maneuvers
Structural limitations
Fuel constraints

Total temperature limits
Ride quality
Rapid speed changes
Tight path following

High maneuverability
High-g maneuvers
Gust control

Night and all-weather operation
Accuracy of stdke
Precise maneuvering
Rapid maneuvering
Gust control at release
Flutter at store release
Survivable controls

Ease pilot workload
Rapid maneuvering
Ride quality
Accuracy of strike
Tight path following

All weather approaches
STOL operation

Accurate placement on runway
Ease pilotworkload
Wave off from any altitude
Crosswind condition

Damaged narrow runway
Short roliout (1,500 to 2,000 ft)

Rapid speed changes
Tight path following

Trajectory generation
Rapid-maneuver control
Trajectory control
Reconfigurable control system
Envelope limiting

Maneuver load limiting
TF/TA/OA trajectory generation
Threat evasion trajectory generation
Automatic and manual trim

Blended inlet/engine control
Envelope limit generation
Control lift
Gust alleviation
Control lift

Flutter suppression
Nozzle control

Speed control

Speed control
Trajectory control
Rapid-maneuver control
Blended inlet/engine control
Maneuver load limiting
Flat tum
Direct force
Gust alleviation

Flutter suppression
Velocity vector control
Attitude nulling

Position nulling
Envelope limiting
Reconfigurable control system
Manual and automatic trim

Weapon trajectory generation
Threat evasion trajectory generation
Envelope limit generation
Fire/flight/trajectory integration
Nozzle control

Fuselage pointing

Speed control
Envelope limit generation
Velocity vector control
Direct force
Automatic trim

Attitude nulling
Trajectory control
Manual trim

Approach trajectory generation
Gust alleviation

Flare trajectory generation
Runway centedine trajectory generation
Envelope limiting
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Table 3.4-2. Analysis of Alternative Mission Segments

Mission segment Control action Driver Control system requirements

®
Air-to-air
combat

(_and (_

High level
ingress/egress

@
High-level
weapon
delivery

Maximize on-target time
Rapid maneuvers
Reduced time to get back to firing

position
High-g maneuvers
Expanded missile firing envelope
for large a, p maneuvers
Reduced flutter when missile,is

released

Total temperature limitations
Quick transition to/from pointing
control

Control engine stall margin

Air combat
maneuvers

Supersonic speeds
Ease pilot workload for mission
preparation
Fuel constraints

High-altitude
penetration

Stores release

Total temperature limits
Threat evasion

Ride quality

Supersonic speeds
Accuracy of stdke
Pilot aiding
Gust control at release
Flutter as store is released

Varying cg

Fuselage pointing
Rapid-maneuver control
Flutter suppression
Gust alleviation

Blended engine/inlet control
BVR trajectory generation
Weapon trajectory generation
Flat turn

Speed control
Direct force

Generate envelope limits
Maneuver load limiting
Envelope limiting
Nozzle control

Trajectory generation
Trajectory control

Range/endurance/time optimization
Generate envelope limits
Manual trim

Trajectory control
Blended engine/inlet control

Envelope limiting
Flutter suppression
Gust alleviation
Automatic trim

Generate envelope limits
Velocity vector control
Blended engine/inlet control
Flutter suppression
Gust alleviation

Weapon trajectory generation
Envelope limiting
Trajectory control
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PFCS module

Table 3.4-3. PFCS Control Effectors

Surfaces Inlets Engine Nozzle

A

_ -- _ 0 _ _ ._ =

¢M u) v • "10 •
A

. __ __ ° o _ _. ° o o o
0 ._ u_ u. n" Z _= m u. _ u. Z

1. Flutter suppression

2. Trim controller

3. Trajectory following

4. Wing camber control

5. Manual control

6. Inlet control (2)

7. Engine control (2)

8. Nozzle control (2)

X

X

X

X X

X X X

X X X

X X

X X X

X

X

X

X

X

X X X

X"

X

X X
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Table 3.4-4. PFCS Control Sensors

PFCS module

Flutter Trim Trajectory Inlet Engine Nozzle
PFCS sensors suppres- control control control

sion controller follow!ng (2) (2) (2)

Inertial data
• Normal acceleration
• Normal acceleration

resolved to vertical
coordinates

• Pitch rate
• Pitch rate resolved

to vertical coordinates

• Pitch angle
• Rate of climb
• Forward acceleration
• Altitude
• Lateral acceleration

• Roll angle
• Roll rate
• Yaw rate

• Heading angle

Air data

• Angle of attack
• Sideslip angle
• Total airspeed
• Mach

• Dynamic pressure
• Static pressure

• Flutter

accelerometers (6)
• LEF positions (6)
• Flaperon positions (4)
• Flap positions (2)
• Canard positions (2)

• Rudder positions (2)
• Pitch axis stick

position
• Roll axis stick

position
• Rudder pedal

positions

• Power level angle
• Nose wheel position

Inlets
'. Normal shock static

pressure (2)
• Normal shock total

pressure (2)
• Local Mach (2)
• Ramp positions (4)
• Bypass door

positions (2)

X

X

X
X

X
X

X
X

X
X

X

X
X
X
X
X

X
X

X

X
X

X

X

Wing Manual
camber control
control

X X

X

X

X
X

X

X

X
X

X

X

X

X X
X X

X
X
X

X

X

X

X
X

X

X
X

X

X

X
X
X

X
X

X

X
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Table 3.4-4. PFCS Control Sensors (Continued)

PFCS module

PFCS sensors Flutter Trim Trajectory Inlet Engine Nozzle
suppres- controller following control control control
sion (2) (2) (2)

Engines
• Gas generator fuel

flow (2)
• A/B fuel flow (2)
• Burner pressure (2)
• A/B pressure (2)
• Fan face pressure (2)
• Fan face

temperature (2)
• Turbine

temperature (2)
• Low pressure rotor

speed (2)

• High pressure rotor
speed (2)

• Fan vane

position (2)
• Compressor vane

position (2)

Nozzles

• Convergent flap
position (2)

• Upper divergent
flap position (2)

• Lower divergent
flap position (2)

X

X

X

Wing Manual
camber

control
control

X

X

X

X

X
X
X

X
X

X

X

X

X

X

X

X

X

X

X

X
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Table 3.4-5. Scale Factors for Sizing Estimates

Scale factor Low High

Memory

• Data storage
• Growth potential
• Ada (from RATFOR)
• Double-preoision data
• Order reduction of controller

• Product

• Code storage
• Growth potential
• Ada

• Logic, redundancy management, and reconliguration logic
(from base control law)

• Product-

Throughput
• Growth potential

• Ada

• Logic, redundancy management, and reconliguration logic
(from base control law)

• Order reduction of controller
• Product

2.0
1.0
1.0

O4
0.8

2.0
1.0

1.6

3.2

2.0

1.2

2.0

..E.5
2.4

2.0
1.5
1.5

1.._55
4.5

2.0
2.0
3.5

m

14.0

2.0

1.6

5.0

1.0
16.0

Note: Reconfiguration data memory requirements are satisfied by system mass memory.
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The data storage requirements for the PFCS control functions were

estimated based on a generic modern controller structure, reorganized for

storage efficiency. The number of non-zero controller variables was derived

in reference 5 based on the number of estimated inputs, outputs, and states.

Additionally, the number was adjusted for controller order reduction. The

results, reflecting the effect of the uncertainty scale factor, are presented

in the data memory columns of table 3.4-6.

The code storage requirements for the PFCS modules are based on the

estimated number of lines of code for each module. This estimate is

extrapolated from existing digital control system software (ref. 6), which

implements a longitudinal augmentation system. The ratio of lines of code to

storage is used to compute the memory requirements listed in the code memory

columns in table 3.4-6. These columns reflect the scale factors discussed

earlier.

The PFCS function throughput requirements were derived using the generic

modern controller structure. Thenumber of arithmetic and logic operations

needed was determined and the uncertainty scale factor applied. The detailed

derivation is presented in reference 5. The resulting throughput needs are

shown in table 3.4-7.

The sizing of the FMS system was estimated based on flight management

software developed at Boeing (ref. 7). Some slightly different techniques

were used in the derivation based on the nature of FMS functions. These were

reflected in the throughput equation and scale factors. The results are

presented in table 3.4-8.

3.5 AR(_CANDIDATE SELECTION

This section describes the selection of an architecture concept to satisfy

the requirement given in section 3.3 and 3.4. A principal guideline was that

the embedded system architecture must be consistent with the validation

methodology development goals of this study. Another guideline was that the

computer system use the fault-tolerant concepts developed by the Advanced

Information Processing System (AIPS) project and that it use basic AIPS

building blocks. Since the AIPS architecture is inherently flexible and must
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be tailored for a particular application, the selection effort concentrated

on assembling the particular AIPS building blocks into an architecture that

best satisfied the IAPSA control system requirements.

It is expected that if the AIP$ architecture is used on a new aircraft, it

will be the basic architecture for the electronic system of the entire

aircraft. The approach taken in this study however, was to define an AIPS

system architecture that meets only the IAPSA requirements with the assumption

that the resulting system represents a segment of the total system. The

segment of the system thus defined will meet all IAPSA requirements as a

standalone system.

The selection of a candidate architecture for IAPSA was guided by

considerations of reliability, availability, maintainability, and damage

tolerance. Design guidelines ensured that the selected architecture was

properly representative of an integrated digital flight control system for a

1990s advanced tactical fighter (ATF) and supported the validation

investigation goals of this study. Finally, the AIPS configuration physical

dispersion features were used to minimize susceptibility to battle damage.

The throughput and memory estimates for mode logic and software-

implemented fault tolerance were adjusted for an AIPS implementation in

reference 5. Fault tolerance in AIPS is an inherent feature of the

architecture. A large percentage of the processing power required to provide

fault tolerance is supplied with dedicated hardware and does not need to be

included as a part of the processing load. The resulting adjusted estimates

for throughput are given in table 3.5-1.

A similar adjustment was made for the memory requirements of the control

modules. The resulting estimates are presented in table 3.5-2.

3.5.1 *TPS Systes Description

AIPS is designed to provide a fault- and damage-tolerant data processing

architecture that meets aeronautical and space vehicle application

requirements. The requirements for seven different applications are described

in the AIPS system requirements (ref. 8). The requirements can be divided

into two categories: quantitative and qualitative. Examples of the former are

processor throughput, memory size, transport lag, mission success probability,
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Table 3.5-1. Adjusted Throughput Requirements for AIPS

Function

Manual control

Trajectory following
Flutter mode controller
Trim controller

Wing camber control

Left inlet control

Left engine control
Left nozzle control

Right inlet control
Right engine control
Right nozzle control

Flight envelope generator
3-D and 4-D trajectory generator
Combat trajectory generator
Autoland trajectory generator

Air data
Inertial

Throughput, Kips

Software FT AIPS

Low High Low High

615

618
328

12
177

73
139
22

73
139
22

200
700

4,099
4,122
2,189

79

1,179

488
923
144

488
923
144

5
24

6
10

533

1,867

369
371

197
7

106

44
83
13

44

83
13

120
420

1,230
1,236

657
24

354

146
277

43

146

277
43

160
560

Totals 2,515 13,124 1,509 3,937

Notes:
• AIPS low estimates = 1.2/2.0 times software FT low estimates.

• AIPS high estimates = 1.5/5.0 times software FT high estimates.

• Manual control function and trajectory following function do not run concurrently.
• Totals assume trajectory following function is active and so do not incorporate manual control.
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Table 3.5-2. Adjusted Memory Requirements for AIPS

Function

Manual control

Trajectory following
Flutter mode controller

Trim controller

Wing camber control

Left inlet control

Left engine control
Left nozzle control

Right inlet control
Right engine control
Right nozzle control

Flight envelope generator
3-D and 4-D trajectory generator
Combat trajectory generator
Autoland trajectory generator
FMS library routines
Air data
Inertial

Totals

Memory, KB

Data Memory Totals

Low High Low High

7
19
2

1
2

37

4O
107

9
4

12

2
15
2

2
15
2

2O8

Low High

38 96
58 144
19 48
5 12

10 24

7 18
38 96

9 22

7 18
38 96

9 22

14 36
72 180
96 240
58 144

72 180
16 32
40 80

606 1,487

46
77
21

6
12

8
41

9

8
41

9

14
72
96
58
72
16
4O

643

Notes:

• AIPS data memory estimates = software FT data memory estimates.
• AIPS low code estimates = 1.2/1.6 times software FT low code estimates.

• AIPS high code estimates = 1.5/3.5 times software FT high code estimates.

136
251

57
16
36

20

111
24

20
111
24

36
180
240
144
180
32
80

1,695
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and so on. Examples of the latter are graceful degradation, growth and change

tolerance, integratibility, and so on. The AIPS architecture is intended to

satisfy the quantitative requirements and also have attributes that make it

responsive to the qualitative requirements.

The system is composed of hardware building blocks, as shown in

figure 3.5-1. These are fault-tolerant processing elements, a fault- and

damage-tolerant intercomputer network, an input/output (I/0) network, and a

fault-tolerant power distribution system. A network operating system ties

these elements together in a coherent system.

The system is managed by a global computer that allocates functions to

individual processing sites, performs system level redundancy management (RM)

and reconfiguration, and maintains knowledge of the system state for

distribution to the component elements. Redundancy management, task

scheduling, and other local services at individual processing sites are

handled by local operating systems. The network operating system links local

operating systems together for such functions as intertask communications.

The AIPS architecture permits application designers to select an

appropriate set of the building blocks and system services and configure a

specific processing system for their application. The number and type of

building blocks and their configuration will be determined by the specific

applications requirements. The application designer need not include all the

building blocks that have been identified as a part of the AIPS system.

A system overview is presented in reference 5; highlights are discussed in

the following paragraphs.

Overview. AIPS consists of a number of computers that may be physically

dispersed throughout the vehicle. These processing sites are linked together

by a reliable and damage tolerant data communication bus called the

intercomputer (IC) bus.

A computer at a given processing site may have access to varying numbers

and types of IlO buses. The IlO buses may be global, regional, or local.

Input/output devices on the global IlO bus are available to all, or at least a

majority, of the AIPS computers. Regional buses connect If0 devices in a

given region to the processing sites located in their vicinity. Local buses

connect a computer to the IlO devices dedicated to that computer.
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FTP (3)

Add-on

FTP (3)
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Legend:
FTP
N
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Gateway

Fault-tolerant processor
Network node

Input-output network to sensors-actuators

Figure 3.5-1. AIPS Fault-Tolerant Building Blocks
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General-purpose computers (GPC) at various AIPS processing sites may have

varying capabilities in terms of processing throughput, memory, reliability,

fault tolerance, and damage tolerance. A triple redundant GPC is available

for those functions requiring fault masking. GPCs can be made damage-tolerant

by physically dispersing redundant GPC elements and providing secure and

damage-tolerant communications between these elements. Vithin AIPS, computers

of varying levels of fault tolerance can coexist so that less reliable

computers are not a detriment to more reliable computers.

Fault Tolerance. A considerable amount of hardware redundancy and

complexity is associated with each of the elements shown in figure 3.5-1.

This redundancy allows each hardware element to be reliable, fault tolerant,

and damage tolerant. From a software viewpoint, however, the underlying

complexity of the system is transparent.

Hardware redundancy in the AIPS is implemented at a fairly high level,

typically at the processor, memory, and bus level. The redundant elements are

always operated in tight synchronism, which results in exact replication of

computations and data. Fault detection coverage with this approach is 100%

once a fault is manifested. To uncover latent faults, temporal and diagnostic

checks are employed.

Fault detection and masking are implemented in hardware, while fault

isolation and reconflguration are largely performed in software with some help

from the hardware. This approach has flexibility in reassigning resources

after failures are encountered, and yet it is not burdensome since isolation

and reconfiguration procedures are rarely invoked.

I)aLage Tolerance. One of the AIPS survlvability-related requirements is

that the information processing system must be able to tolerate those damage

events that do not otherwise impair the inherent capability of the vehicle to

fly, whether it is an aircraft or a spacecraft.

The internal architecture of the redundant computers supports the damage

tolerance requirement in several ways. First, the links between redundant

channels of a computer are point-to-point. Second, these dedicated links can

be several meters long. This makes it possible to physically disperse

redundant channels in the vehicle. The channel interface hardware is such

that long links do not pose a problem in synchronizing widely dispersed

processors.
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For comnunication between GPCs and between a GPC and I/O devices, a

damage- and fault-tolerant network is employed. The network consists of a

number of full duplex links that are interconnected by circuit switched nodes

to form a conventional multiplex bus. The normal network configuration is

static, and the circuit switched nodes pass information through them without

the delays associated with packet switched networks. The protocols and

operation of the network are identical to a multiplex bus. Every transmission

by any subscriber on a node is heard by all the subscribers on all the nodes.

Although the network is operated as a virtual bus, the network concept has

many advantages over a bus. First, a single fault can permanently disable

only a small fraction of the virtual bus, typically a node or a link

connecting two nodes. The network is able to tolerate such faults due to the

richness of interconnectlons between nodes. The nodes are sufficiently smart

to recognize reconflguratlon commands from the network manager_ which is one

of the GPCs. By reconflguring the network around the faulty element, a new

virtual bus is constructed. Except for such reconfigurations, the structure"

of the virtual bus remains static.

Second, weapons effect damage or other damage caused by electrical shorts,

overheating, or localized fire would affect only subscribers in the damaged

portion of the vehicle. If the sensors and effectors are physically dispersed

and the damage event does not affect the inherent capability of the vehicle to

fly, then the control system could continue to function as determined by

sensor/effector availability. The network itself would not be a reliability

bottleneck.

Third, fault isolation is much easier in the network than in multiplex

buses. For example, a remote terminal transmitting out of turn (a rather

common failure mode) can be easily isolated in the network through a

systematic search where one terminal is disabled at a time.

AIPS Element Capabilities. The IAPSA architecture study assumed that the

processor throughput would be 2 to 4 Mips. Technology with this level of

performance should be reasonably mature at the projected time of its flight-

critical application in IAPSA II.

Currently available memory capabilities are such that the memory

requlrements for the IAPSA, which are measured in terms of a few megabytes,

were not considered to be a design issue.
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Each channel of an AIPS fault-tolerant processor (FTP) has an input/output

processor (IOP) and a computational processor (CP). All of the I/O and IC

network management functions are allocated to the IOP. The CP is dedicated to

the processing of application algorithms. An operating system overhead of 30%

is assumed so that only 70% of the CP's throughput is available for the

application algorithms. This translates to 1.4 to 2.8 Mips of available

throughput for the FTP using the 2 to 4 Mips technology projection discussed

previously.

Reliability data from previous studies were used for initial candidate

selection. Rough figures of merit for the reliability of the FTP processing

sites yere extrapolated from a study that assumed a commercial transport

environment. The resulting estimates were 10-7 probability of failure for a

triplex FTP and I0-I0 for a quadruple FTP.

Similarly, to evaluate the effectiveness of the AIPS FTMP, data from a

study made during the first generation FTMP development effort were used. The

resulting l-hr failure likelihood was 2x10 -I0. Finally, a triplex IC network

study had indicated an unreliability on the order of 10-13 . For this reason

the IC network was not considered a reliability driver in the candidate

selection.

These rough data were used to guide the synthesis of viable AIPS-based

candidate architecture alternatives documented in reference 5. The resulting

choices will be described next.

3.5.2 ProeesslngAlternatives for IAPSA

The alternative AIPS building block configurations considered for this

study were (I) a single quadruple FTP, (2) a single fault-tolerant multi-

processor (FTMP), (3) multiple FTPs, (4) two FTMPs, and (5) a combination of

one FTMP and multiple FTPs. In all cases, the processing equipment would be

dispersed to provide damage tolerance. The key considerations that went into

selecting these alternatives included (1) the reliability, availability, and

maintainability requirements, (2) the IAPSA processing resource requirements,

and (3) the validation goals of this study.
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Configuration 1: A Single Quadruple FIT. This configuration, shown in

figure 3.5-2, consists of a four-channel FTP physically dispersed within the

ATF equipment bay(s). This configuration requires the least hardware and is

the simplest of all the alternatives. It has a number of simplifying

properties associated with its single GPC architecture. These are: (i) there

is no intercomputer communication, (2) there is no requirement for inter-GPC

crossbarring of the sensor and effector I/0, (3) the flight program can

consist of one software load module, and (4) there is no requirement for

function migration.

Configuration 2: A Single FTMP. This configuration consists of a single

FTMP and is depicted in figure 3.5-3. The FTMP is designed so that each

processor and memory module used in a triad _may be physically separated. In

addition, the common memory modules may also be physically separated. This

distribution allows the FTMP configuration to meet the damage tolerance

requirement.

The throughput requirements can be met with a sufficient number of triads.

Two to four triads will be required to meet the IAPSA requirements. The

number of spare processors and memory modules can be tailored to meet the

reliability, availability, and maintainability goals.

Configuration 3: Multiple FTPs. Multiple FTPs, which communicate over a

fault-tolerant IC network and are physically dispersed, may be used to meet

the IAPSA processing requirements. Several configurations that use multiple

FTPs were considered. Figure 3.5-4 indicates some of these alternatives.

They are considered to be representative and indicative of the advantages and

disadvantages associated with multiple FTP configurations. These alternatives

are referred to here as options i, 2, and 3.

Option I partitions the control functions along natural lines into three

FTPs. An FTP is allocated to each of the following control systems: the left

propulsion control system, the right propulsion control system, and the

integrated flight control system. This option has problems in terms of

balancing the throughput. The integrated flight control system could saturate

an FTP and each propulsion control system underutillzes its FTP. Option 2

solves the possible saturation problem by using an additional FTP and
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Figure 3.5-2. Configuration 1: Quadruple FTP
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Figure 3.5-3. Con#guration 2: Single FTMP
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Figure 3.5-4. Configuration 3: Multiple FTP Options
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partitioning the integrated flight control functions between two FTPs.

Option 3 makes more efficient use of the FTP resources by collocating the left

and right propulsion control functions in one FTP.

All of these configurations share the advantages gained from using common

processing elements. This commonality minimizes the spares, which must be

kept in the operational inventory. It also simplifies the procurement

process, hardware maintenance procedures, and software maintenance procedures.

These advantages all reduce life cycle costs.

All of these configurations also share the advantages gained by using an

intercomputer network. These advantages include growth capability and an

architectural compatibility with total aircraft integration.

Configuration 4: Two FTMPs. Two FTMPs, which communicate over a fault-

tolerant IC network and are properly physically dispersed, may be used to meet

the IAPSA processing requirements. It was shown that one FTMP is sufficient

to satisfy the IAPSA requirements. Thus the use of two FTMPs is difficult to

justify. One FTMP could be allocated to engine control and one FTMP to flight

control. However, sharing one FTMP for the control of two engines does not

have the same appeal as dedicating one FTP to each engine, as is done in

configuration 5. This configuration is dismissed as being an excessive option

when compared to configuration 2 (one FTMP) and as a less attractive option

when compared to configuration 5 (one FTMP and two FTPs).

Configuration 5= One FTMP and Multiple FTPs. Only one configuration of

the options available using an FTMP and multiple FTPs as building blocks was

considered to be a reasonable one. This configuration allocates one FTP for

each propulsion control system and allocates the integrated flight control

processing to an FTMP. It is assumed that the FTP and FTMP components would

be properly dispersed throughout the vehicle to satisfy damage tolerance

requirements. This configuration is depicted in figure 3.5-5.

This configuration has a great deal in common with the multiple FTP

configuration discussed in option 1. Here, an FTMP (instead of an FTP) is

allocated to process the integrated flight control algorithms. The FTMP is

distinctly superior to the FTP in terms of its throughput capacity. In this

case, there is clearly adequate throughput in the FTMP to perform the

integrated flight control system processing. In addition, the sparing
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capability of the FTMP permits much more freedom in specifying the degree of

OSsparing for this processing site. To a large degree, this configuration has

all of the advantages discussed in option 1 and solves its possible

disadvantages.

The one significant disadvantage here is the relative implementation risk

associated with the FTMP. As indicated previously, the FTP has a maturity

that is roughly an order of magnitude greater than that associated with the

FTMP. In addition, the AIPS proof-of-concept FTMP is not likely to be

developed in the timeframe of the IAPSA schedule. In the absence of this

relative FTMP implementation risk, this configuration would be viewed as

preferable to the option 1 multiple FTP configuration.

3.5.3 Input/Output Architecture Tradeoffs

One of the major issues that affect the nature of the I/0 architecture is

the physical location of the electronics that are directly associated with

sensors and effectors. Traditionally, most sensors and effectors have been

either located in controlled areas with other electronics or, if they are

mounted remotely, are supported by electronics in the electronics area.

Sensors that are typically located in avionics areas are inertial sensors and

air data sensors. A typical example of the electronics supporting remote

devices are the servo electronics within the flight control computers that

control the actuators located at the control surfaces. Electronic technology

is leading to a gradual trend toward distributed electronics. The advantages

offered by advanced electronic technology motivates the use of embedded

electronics to enhance the performance of sensors. In addition, some actuator

manufacturers are proposing embedded servo electronics. Engine fuel controls

are being implemented by electronics and located directly on the engine.

Progress in making electronics for severe environments is making these changes

feasible. There remains, however, a relative environmental penalty for these

locations.

The other major issue that determines the nature of the IlO architecture

is whether sensor and effector devices are directly connected to particular

processor channels or whether an IlO bus is used. Directly connected IlO has

several characteristics that are superior to network-connected I/O. Directly
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connected I/O will likely be the most simple and straightforward in design.

Also, the I/0 throughput is constrained only by the characteristics of the

sensor/effector device on one hand and the computer channel on the other.

The use of an I/0 network will necessitate additional hardware and

software. The I/O network will thus limit the total throughput available and

contribute to transport delay. On the other hand, network-connected I/O has

several other advantages. Network I/O will be considerably more flexible in

its ability to adapt to corrections, modifications, and expansions in the

system architecture than directly connected I/O. I/O that is connected

through a standardized bus can be modified without directly affecting the

processing hardware. The changes in the I/O configuration are handled through

the network service software and the application software. It must be

recognized, however, that this flexibility advantage can be nullified if the

supporting software is not truly flexible.

The most important advantage of a network-connected I/O is the

contribution to an effective fault-tolerant design. Network I/O minimizes the

effects of failures and allows greater flexibility for recovery from detected

failures. When I/O is directly connected to a particular computer channel,

the use of those I/O devices can be lost if that computer channel fails and if

no additional provision is made to cross strap the device to another channel.

By providing a standardized interface between peripheral devices, an

intelligent redundancy management system can have greater freedom to combine

unfailed equipment into a system that continues to perform critical functions

after many failure and damage events.

3.5.4 Selected AIPS Candidate Description

The multiple FTP configuration, which allocates an FTP to the left

propulsion control system, the right propulsion control, and the integrated

flight control system, was selected as the configuration for IAPSA. The

recommended system configuration is assembled from the following basic AIPS

building blocks: (I) two triplex FTPs, (2) one quadruple FTP, (3) nine

intercomputer network nodes, and (4) 52 I/O network nodes.

The recommended configuration consists of multiple modular processors

selectively distributed in the aircraft equipment bay(s) so as to not be
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vulnerable to a single hit. The functional distribution in the recommended

configuration is consistent with the traditional partitioning of engine

control and flight control functions used in the past.

The three computer sites are connected through a three-layer IC network.

This network provides the transfer of application data between computers to

implement the integrated airframe/propulsion control strategies. This network

allows for the high integrity management of the total system that makes it

possible to reconfigure the system to continue all critical tasks after a

total failure of any one processing site.

The IlO architecture consists of one interconnected network. An I/0

network is selected primarily because of the contribution to fault tolerance.

This architecture contributes to a design that can more effectively meet the

flight safety requirements and increase mission reliability and availability.

Even though the network is completely interconnected, it is normally operated

as six independent virtual buses. There are two buses controlled by the

flight control FTP to provide I/O for all of the integrated flight control

functions. There are, in addition, two buses for each engine controlled by

the engine FTPs. Two buses are used for the flight control and for each

engine to supply nearly simultaneous commands to the two channels of the dual

actuators and also to provide for continuous control in spite of any failure

that might disrupt communication on any one bus. The use of the two buses to

the dual actuators prevents any interruption in the control commands due to

network failure recovery.

There are 52 nodes in the total I/O network. One node is assigned to each

channel of each redundant actuator. This assignment is made both for

reliability and for physical location reasons. It would obviously be

inappropriate to connect both redundant channels of an actuator to one node

since the failure of that node would cause the loss of the entire actuator.

It would be reasonable, however, to connect one channel from two or more

actuators to one node if there were appropriate physical proximity.

Nodes are assigned to sensor systems according to physical location and

the redundancy level of the sensors. It is assumed that the air data sensors

and inertial sensors are located in the electronics compartment and can share
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four nodes. There are also four nodes in the cockpit to provide interface for

the pilot stick, pedal, and throttle positions. In addition, there are four

nodes associated with four channels of the flight control FTP.

One node is assigned for each set of redundant actuator channels for each

section of the propulsion system: the inlets, the engines, and the nozzles.

This gives a total of 12 nodes for the propulsion system. Using one node for

three or four actuators does not reduce reliability because it is assumed that

all actuators work together as a set for the control of the engine.

The resulting data communication load was estimated based on the number of

actuator commands and sensor samples sent over the network to satisfy the

requirements for each major control function. Data words sent to or from a

particular device interface unit were combined into messages. Using an

overhead estimate of 100 bits per message resulted in an I/O bus loading that

lies within bus throughput limits. A similar calculation for the IC network

showed a greater throughput margin.

3.5.5 Single-Engine Pighter Considerations

The previously described candidate architecture was defined to meet the

requirements of a high-performance multimission twin-engine fighter. A twin-

and single-engine fighter differ in the effect of permanent loss of thrust

from one engine. This situation does not prevent the continued safe flight

and landing of a twin-engine fighter, while it leads to loss of the single-

engine aircraft. For the integrated control system, the result is that

certain failure situations may be tolerated in a twin-engine case that are

unacceptable in the single-englne case. This leads to a greater level of

failure protection necessary for the control system elements associated with

thrust control for the slngle-englne aircraft.

The modifications to the candidate architecture for application to a

single engine aircraft are fairly straightforward. They involve using only

one FTP for propulsion control and dedicating it to the one engine. In this

case, the propulsion control FTP should be a quadruple FTP, as opposed to the

triplex FTPs recommended for the two-englne ATF. In the two-engine

configuration, the left and right propulsion control systems with triplex FTPs

back each other up. For the slngle-engine configuration, a quadruple FTP,
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with its associated I0-I0 failure likelihood, is required to meet the IAPSA

flight safety goal. This configuration is very similar to the multiple FTP

configuration discussed in Option 3.

Another aspect of a single-engine aircraft is the secondary power system

design. Since the integrated control system requires an uninterruptible

source of hydraulic and electrical power for its continued operation, an

immediately available emergency power source must be provided. Thus the

secondary power design will have to contend with a much higher probability of

emergency operation. This can have many implications for the integrated

control system reliability depending on the details of the secondary power

system design. With a well-proven emergency powe_ unit (EPU), the reliability

effect may be small. However, in a single-engine aircraft the temporary loss

of thrust also places the aircraft in an emergency restart situation. During

this condition, the emergency power system must provide both hydraulic and

electrical power sufficient to control the airplane, as well as cranking power

to restart the engine.
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4.0 CANDIDATE ARCHITECTURE EVALUATION

The candidate IAPSA II system architecture was evaluated using the

prevalidation methodology and associated tools. As previously discussed,

the system performs control functions that are critical to the flight

safety and mission effectiveness of an advanced fighter, imposing demanding

performance and reliability requirements on the system. In addition, the

designed system must have the capacity to handle the workload of these

control functions during normal operation as well as in fault recovery

situations.

Table 4.0-1 summarizes the high-level capability provided by each major

control function (see ref. 9 for details). Two of the major functions,

manual control and engine control, are needed to allow continued flight to

a safe landing. The remaining functions are needed to provide full mission

capability. No attempt was made in the reliability study to distinguish

intermediate levels of mission capability. The effects of system element

failures and combinations of failures were categorized in terms of the

three system failure conditions: fully mission capable (FMC), safe flight

and landing (SFL), and unsafe.

The control functions listed in the table have specific sensing and

actuation requirements as well as required cyclic execution rates derived

during the control law definition effort. The functional design was

developed in more detail by decomposing the major control functions into

subfunctlons. At the subfunction level, the design identifies the sensor

and actuator redundancy management processes. The detailed development was

based on several ground rules, one of which is the sharing of sensors and

computing processes between the major functions. A discussion of the

ground rules and the resulting subfunction definition and data transfer

details are presented in reference 9.

The candidate architecture definition allocated the IAPSA II computing

functions to the flight control computing site and to an engine control

computing site for each engine. The resulting straightforward allocation

of computing subfunctions and associated update rates are shown in

tables 4.0-2 and 4.0-3.

PRECEDING PAGE BLAr-,'X NOT FILMED
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Table 4.0-1. IAPSA II Major Control Functions

System functions

Manual control

Capabilities

Basic flight path control

Flutter control High speed ingress with stores FMC

TraJectory following Track optimized flight paths FMC

Wing camber control Optimized wing performance for FMC
m,ss_on segment

Trim control FMC

Inlet control Full supersonic capabdity FMC

Engine control SFL

Nozzle control Thrust vectoring/reversing FMC

Needed for:

SFL

Notes:

SFL: Safe flight and landing
FMC: Full mission capability

Table 4.0-2.

100 Hz

Wing accelerometer SM

Flutter law

Body rate SM

Fast a,r data SM 1

Fast air data calculation 1

Computing Allocation - Right Control

50 Hz

Pilot command SM

25 Hz

Trajectory law 1

12.5 Hz

Trim command SM

Manual law Slow air data SM 1 Trim law

Camber law Slow air data calculation 1

LE flap AM

Body accelerometer SM

Flaperon AM Inertial calculataon

TE flap AM Pitch coordination

Canard AM

Rudder AM

Nosewheel AM

SM. - Sensor management
AM - Actuator management
1 I Reference configuration

Flap command SM
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Table 4.0-3. Computing Allocation - Engine Control

100 Hz 50 Hz 2S Hz
i

Inlet SM Nozzte AM Pdot thrust SM

Inlet law Fan face SM

Inlet ramp AM Engine SM

Inlet ring AM Fuel flow SM

Fas_ air data SM 2 Engine law

Fast air data 2 calculation Main fuel AM

Afterburner fuel AM

Fan guide vane AM

Compressor guide vane AM

Trajectory law 2

StOW air data SM z

Slow air data calculation 2

Notes:

SM - Sensor management
AM - Actuator management
2 - Refined configuration
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4.1 CANDIDATE AR_T_-r_ DETAILS

The physical configuration of the IAPSA II candidate architecture is

shown in figure 4.1-1. The components are arranged in three major groups:

(1) a flight control group, (2) a right engine control group, and (3) a

left engine control group. To support the subsequent system modeling,

three key aspects of the system required

aspects included (I) function partitioning,

interconnection, and (3) failure protection.

section 3.5.

further elaboration. These

(2) physical and functional

Major details were covered in

One of the two flight control I/O networks is shown in figure 4.1-2.

Half of the flight control sensors and actuators are connected to

network I, and the other half are connected to network 2. The sensors and

actuators interface to the network via device interface units (DIU). The

DIU provides signal conditioning/conversion for the devices and handles the

network communication protocol. Each DIU connects to a single network

node.

The flight control IlO network consists of a mesh of 18 nodes that are

connected to the FTP with three root links. The redundant flight control

sensors and actuators are spread evenly across the two networks and the

redundant DIUs. The specific assignment of these elements is shown in

table 4.1-1. The safety-critlcal flight control sensors are primarily

quadruple redundant, except for the skewed body motion sensors. The

mission-critical flight control sensors are triple redundant. The flight

control surface actuators have a dual redundant control channel

arrangement. Each actuator channel is connected to a different network.

The two I/O networks for one propulsion system are shown in

figure 4.1-3. Like the flight control arrangement, the propulsion control

sensors and actuators are connected half to one network and half to the

other network. Each network contains four nodes, connected to the FTP via

two root links. Since the network is a system building block entity, its

operation is identical to that of the flight control networks.

The specific assignment of the redundant sensors and actuators for one

propulsion system is presented in table 4.1-2. Most propulsion system

sensors are dual redundant except the engine core sensors, which are
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Figure 4.1-1. Reference Configuration Overview
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Table 4. I- 1.

C)evtce$

Body accelerometers

Body gyros

Angle of attack

Angle of sideslip

Static pressure

Sensor/Actuator Connection - Flight Control Networks

Redundancy

2

2
2
2

, DIUInocle,, , ID
51
S2
53
S4

$1
S2

S3
$4

Sl
S2

S3
$4

SI
S2
S3
S4

$1

S2
S3
$4

Total pressure 1 S 1 1
1 $2 1
1 S3 2
1 $4 2

Total tern Derature 1 S1 1
1 $3 2

Pitch stick 1 CP1 1
1 CP2 1
1 CP3 2
I CP4 2

ROll stick 1 CP1 1
1 CP2 1
1 CP3 2

1 CP4 2

Rudder pedal 1 CP 1 1
1 CP2 1
1 CP3 2
1 CP4 2

Left throttle 1 CP2 I
1 CP3 2

i

Right throttle 1 CP1 1
1 CP4 2

Flap lever

Pitch trim

Roll trim

Yaw trim

CP1
CP2
CP3

cP2 1

CP3 2
CP4 2

CP1 1
CP3 2
CP4 2

CP1 1
CP2 1
CP4 2

NW
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Table 4. I- 1. Sensor�Actuator Connection - Flight Control Networks (Continued)

Devices

Left canard actuation

Right canard actuation

Nosewheel actuation

Leading edge actuation

L outboard flaperon actuataon

L inboard flaDeron actuation

L TE flap actuation

L rudder actuation

R rudder actuation

R TE flap actuation

R inboard flaperon actuation

R outboard flaperon actuation

L outboard wing accelerometers

L m _d-wing accelerometers

L |nboard wig acceterometers

R inboard wing acceterometers

R mid-wing accelerometers

R outboard wing accelerometer3

Redundancy

I

I

DIU/node ID

CDLI

CDL2

NW

1
2

IFL1
IFL2

1 CDR1 1
1 CDR2 2

1 N1 1
1 N2 2

1 LER 1
1 LEL 2

1 OFL1 1
1 OFL2 2

1
2

1
1

1 TEL1
1 TE L2

1 RL1
1 RL2

RR1
RR2

1 TER1
1 TER2

1 IFR1
1 IFR2

1 OFR1
1 OFR2

OFL2
OFL1
IFL2

IFL1
TEL,?.
TEL1

1 IFL2 2
1 IFL1 1
1 TEL2 2

1
2
1

TER2
TER1
1FR2

TER1
1FR2
1FR1

1 1FR1 1
1 OFR2 2
1 OFR1 1
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Network 2

CH1

CH 2
Inlet Engine Nozzle

CH 3

Left engine

control FTP

Network 1

©
Device interface unit (DIU)

Node

Figure 4.1-3. Left Engine I/0 Network Layout
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Table 4. I-2. Sensor�Actuator Connection - Engine Control Networks

Devices Redundancy

Upper ramp actuation

1
Inner ramp actuation 1

1
Bypass ring actuation 1

1
Duct static pressure 1

1
Normal shock total pressure 1

DIU/node ID

INL1
tNL2

INL1
INL2

INL1
INL2

INL1
tNL2

tNL1

INL2

1 INL1
Normal shock static pressure 1 INL2

1 NOZ1
Convergent nozzle acl:uat=on 1 NOZ2

1 NOZ1
Upper nozzle flap actuation 1 NOZ2

NOZl
NOZ2Lower nozzle flap actuation

1 ENG1
Fan face pressure 1 ENG2

1 ENG1
Fan face tern peratu re 1 E NG2

1 ENG1
Fan speed 1 ENG2

Corn pressor speed 1 E NG 1

Fuelflowmeter
ENG1
ENG2

Burner pressure 1 E NG 2

1 ENG1
Fan turbine inlet temperature 1 ENG2

1 ENG1
Afterburner pressure 1 ENG2

1 ENG1
Fan guide vane actuation 1 ENG2

1 ENG1
Compressor guide vane actuat,on 1 ENG2

1 ENG1
Fuel meter,ng valve actuatmon 1 ENG2

1 ENG1
Afterburner fuel metering velve actuation (each of 5) 1 ENG2

1 E NG 1
Afterburner light off detector 1 ENG2

1 ENGI
Main fuel S/O device 1 E NG2

1 ENG1
Afterburner zone fuel S/O device (1 of 5) 1 ENG2
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covered by an analytic redundancy management scheme. The propulsion system

actuators are dual channel. Each actuator channel is connected to a

different I/O network, like the flight control actuators.

4.1.1 Failure Protection Details

Failure protection is the central consideration in the design of

flight-critical systems. Redundancy management processes are responsible

for the detection and identification of system element faults and any

necessary reconfiguration of functions to maintain safety or mission

capability. Failure protection assumptions made for the candidate system

are discussed by functional category in reference 9. Some of the key

capabilities of the assumed candidate system are presented in this section.

A key failure protection issue for the candidate architecture is

function migration, which provides failure protection for the computing

functions. In an AIPS system, function migration is a nonroutine change of

computing site assignments for the different system computers. An early

design decision was made not to implement this capability for failure

protection in the candidate architecture. The capability was judged to be

relatively immature for the timeframe of the IAPSA II application.

A key feature of the AIPS system is that application computing

functions can be written as if they execute on a perfectly reliable single-

channel computer. The AIPS building block hardware and software elements

provide protection from computing element failure. FTP redundant channels

execute exactly the same software in instruction synchronism. All of the

computed outputs are voted to ensure bit-for-bit agreement. An

unsuccessful vote points out a faulty channel. All inputs and outputs go

through a byzantine fault tolerant data exchange process to ensure that

each good channel is operating with exactly the same data. Special fault-

tolerant clock (FTC) hardware keeps each channel in sync, and special data

exchange (DX) hardware allows for fast, reliable exchange of interchannel

data.

The AIPS system

reconflguratlon (FDIR)

redundancy management.

software failure detection, identification, and

process has the overall responsibility for FTP

The Fast FDIR process checks for indications of
D
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output disagreement and ensures that all channels are in instruction

synchronism. _lhen necessary, processor interlock hardware is used to

disable a faulty channel's outputs. FDIR programs running in background

perform self-tests on the channel hardware. A watchdog timer monitors the

periodicity of the channel cyclic execution. More detailed information

about the FTP failure protection is provided in reference 5.

Two good FTP channels are needed for operation when a guaranteed

shutdown is required for a subsequent channel fault. Therefore, the

quadruple flight control computer provides fail-op/fail-op/fail-off failure

protection capability for the safety-critical functions. Similarly, the

engine computer provides f.ail-op/fail-off capability for each propulsion

system.

Sensor/actuator data transfer takes place on the I/O networks.

Responsibility for maintaining a communication path to all good devices

rests with the I/O redundancy management process, which is a software

building block element of the /tIPS system services software. Most network

repair actions command nodes to enable or disable network links using

special command messages over the I/O network. The repair strategy

fundamentally consists of turning links on and off to isolate faulty

network elements and to provide an alternate data path to the affected

DIU(s). Certain candidate architecture faults, such as DIUs or nodes, will

permmently disable the directly connected sensors and actuators because no

alternative path is possible.

Flight Control Devices. Most of the safety-critical sensors listed in

table 4.1-1 were quadruple redundant to provide full operation after two

llke sensor failures. Mission-critlcal sensors are triple redundant to

provide fail-op/fail-off failure protection for the mission-crltical

control functions. Voting processes executing in the FTP compare redundant

sensor readings to detect and identify sensor failures. Since a comparison

process is used, only failure detection can be accomplished when two

sensors remain operational.

The skewed axis sensor readings are processed to provide estimates of

the three axis rates and accelerations. A sophisticated process compares

the readings for consistency in order to detect and identify sensor
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failures. In this situation four sensors are needed for the process to

provide failure detection capability. Five are needed to identify the

failed sensor.

The sensor redundancy management processes can use communication status

information to aid fault identification. When data are unavailable to a

comparison process because of a known communication fault, operation can be

continued with a single remaining sensor (or three skewed sensors).

However, in this situation the voting process is unable to detect a

subsequent sensor fault.

Eight primary surfaces provide basic flightpath control. At least two

of the surfaces contribute most of the control moment for each axis. Pitch

axis control is provided by two canards. Two flaperons on each wing

control roll axis motion. Similarly, two rudders control motion around the

yaw axis. Secondary surfaces and devices include leading edge flaps,

trailing edge flaps and nosewheel steerlng. Each surface or device is

moved by a dual actuator. The actuator is based on a dual coil/dual

monitored valve approach. Figure 4.1.1-1 shows the configuration of the

standard actuator.

Local redundancy management is used to react to most failures. Special

monitor hardware detects most failures of the actuator position and valve

position sensors. When failures are detected, the other actuator processor

can take control. The actuator processor computes a model of the control

valve dynamics to detect valve failure. Valve failure will lead to bypass

of that side of the dual tandem ram and continued operation using the other

valve. A self-test process and watchdog timer hardware detect failures of

the actuator processor hardware. Detected failures result in control of

the surface by the other processor.

Propulsion Control Devices. As previously described, most of the

propulsion sensors are dual redundant. For the candidate system, model-

based redundancy management processes were assumed to allow fail-op /fail-

off failure protection capability. Details of the assumed processes are

presented in reference 9. Highlights are outlined below.

An inlet flow model identifies failures among the inlet pressure

sensors, fan face sensors and inlet device position sensors. Throttle
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BYI

DTR

M Monitor HYD Hydraulic system
PROC Processor VLV Control valve

$D Servo drive BYP Bypass device.
CO Coil DTR Dual tandem ram

POS Position sensor

Figure 4.1. I- 1. Surface Actuation - Reference Configuration

7O



command sensor management uses the throttle setting of the other engine to

help identify sensor failures. A fuel flow model identifies metering valve

position sensor failures and fuel flovmeter failures. The models execute

on the engine control FTP.

Redundancy management for the engine core sensors employs a

sophisticated algorithm described in detail in reference 10. The core

sensors include fan speed, compressor speed, burner pressure, fan turbine

inlet temperature, and afterburner pressure. The analytic redundancy

method detects and identifies failures among the five sensor types to

provide fail-op /fail-off capability.

All propulsion devices employ the same general actuation control

concept, shown in figure 4.1.1-2. A propulsion actuator is basically a

dual-channel device incorporating fail-passive electronics. Generally,

propulsion actuation element failures are detected using self-test methods.

Failures detected in th_ electronic elements cause one channel to fail

passive. When both sides fail passive, disengagement causes the device to

move to a preferred fixed position, causing the propulsion system to

operate at a degraded performance level.

The fuel-handling portion of the system includes special fuel shutoff

devices vhere needed for additional safety. This capability is used as a

last resort to protect against hazardous overspeed or overtemperature

situations.

4.2 RRLIABI_KqALUATION OF CANDIDATg

Two key measures were used to evaluate the system reliability. The

first, safe flight and landing, is a measure of the safety implications of

the system design. Safe flight and landing capability means that the

aircraft can fly to a recovery airfield and land safely. Aircraft

operation may require the use of emergency procedures and diversion to an

emergency base. This reliability measure is based on a 3-hr period, which

is representative of a long deployment mission.

The second measure, full mission capability, indicates the ability of

the aircraft to complete its mission. Full mission capability means that

the aircraft can continue to fly any of its possible missions after the
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Dewce interface units

BYP

DTR

Devices (per actuator)

FPE Fail passive electronics 2
CO Coil 2

VLV" Control valve 2

BYP Bypass device 1

SOL Engage solenoid 2

POS Position sensor 2

DTR* Dual tandem ram 1

HYD Hydraulic system 2
• Active failure mode

Figure 4.1.1-2. Propulsion Actuation
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failure of a system element. The applicable redundancy management process

must allow continued operation with no special procedures and no

significant performance degradation. A l-hr time period consistent with a

combat mission is used for numerical evaluation.

The reliability evaluation process was accomplished in three phases.

The first step was a functional failure analysis, undertaken to define how

the system fails. Next, an abstract model of the resulting failure

behavior was formulated for a reliability tool. Finally the system loss

probabilities were computed and evaluated to understand the system

concept's strengths and weaknesses.

4.2.1 Failure Analysis

The flight control functions were organized into the functional blocks

illustrated in figure 4.2.1-1. Similarly, the functional blocks for one of

the two propulsion control systems are presented in figure 4.2.1-2.

Significant operational states of these functional blocks were determined

by relating system performance after failures within the blocks to the two

system failure conditions of interest. The goal was to identify those

functional block states that by themselves or in combination with the

states of other blocks lead to a loss of system capability. A detailed

failure analysis is presented in reference 9, with some of the analysis

highlights given in the following paragraphs.

Flight Control. The failure analysis for elements in the flight

control sensing functional blocks was based on some standard assumptions

and ground rules. The voting processes used for sensor redundancy

management were assumed to operate perfectly. This means that no false

alarms, missed alarms or incorrect identifications occur as long as good

sensors outnumber bad sensors. When only two sensors remain (four for

skewed sensors), it is assumed that the process can detect that a failure

has occurred but cannot identify which of the remaining sensors is bad.

A known loss of communications can be used by redundancy management to

extend operations in certain situations. The assumptions used in the

different situations are presented in reference 9.
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Redundancy management processes require time to identify a failed

sensor and reconfigure the algorithm accordingly. A possible hazard exists

if, during a sensor failure recovery period, another sensor from the

redundant set fails. This situation wlll be referred to as nearly

coincident sensor failure. In the case of a quadruple set of sensors, it

means that two good sensor values will be processed with two bad values.

The resulting inability to "outvote" the bad data is assumed to be

catastrophic.

The results of the failure analysis by functional block is presented in

table 4.2.1-1 for the flight control group of elements.

A major analysis assumption was that the flutter control law provides a

minimum safe level of performance when sensing at a single site or

actuation of a single surface is lost. The resulting degraded performance

was assumed to be adequate to allow safe flight out of the critical flutter

envelope.

With this assumption, flutter sensing needs can be met with triple

redundant sensors at each site, providing fail-oplfail-off capability. The

operating assumption is that the aircraft will slow down out of critical

envelope before flutter control is deactivated.

For actuation the assumption is that the control law is designed with

the capability to fly out of the critical flutter envelope with a single

passive flutter control surface. Fault reaction will take place if a

fiaperon or trailing edge flap fails passive for any reason during flutter

operation.

The flight control devices include the primary surfaces used inbaslc

fllghtpath control, canards, flaperons, and rudders. Flight control

secondary devices include the nosevheel and the leading and trailing edge

flaps. The primary control surfaces are used by the safety-critical manual

control function. A key failure analysis assumption is that continued safe

flight and landing is possible if a single primary surface fails passively.

For roll axis control, it is assumed that symmetrical pairs of flaperons

can be lost. In these situations, the performance reduction caused by the

loss of a single surface eliminates full mission capability. Another key
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Table 4.2. 1-1. Function Failure Analysis - Flight Contro!

Function

Pilot command

Total loss
effect

Acbve failure mode considerattons

i

Pitch. roll, yaw, sensing Unsafe

Tr_m command sensing SFL

Flap lever SFL

Body motion sensmg

Rate sensing Unsafe

Acceleratton sensmg Unsafe

Air flow sensing

Angle of attack Unsafe

Angle of sideslip Unsafe

Statac pressu re SFL

Total pressure SFL

Total temperature

Total loss of capabdity during crittcal phase of flight is
Wing acceleration sensmg SFL catastrophic

Flight control computing Unsafe

Loss of single surface - SFL (if all primary surfaces
Canard control Unsafe operational)

Surface stuck/jammed - Unsafe

Loss of single surface or two symmetrtcal surfaces - SFL
Flaperon control Unsafe (if other primary surfaces operational)

Surfaced stuck/jammed - Unsafe

LOSSof stogie surface - SFL (if all primary surfaces
Rudder control Unsafe operational)

Surface stuck/jammed - Unsafe

TE flap control SFL Loss of stogie surface - SFL

Nosewheel control SFL

LE flap control SFL

Table 4.2. I-2. Effect of Propulsion System Capability on Aircraft State

Propulsion system capabdity combmation Resulting aircraft state

Full - full Fully mission caloable

Full - normal Safe flight and landing

Full - low Safe flight and landing

Normal - normal Safe flight and landing

Normal - low Safe flight and landing

Low - low Unsafe
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assumption is that failures that leave any primary control surface "stuck"

or hard over cause loss of safety.

Most actuator control element failures are handled by the local

redundancy management processes. One assumption is that control valve and

hydraulic power failures are perfectly identified by the local process,

resulting in an operational surface using the redundant devices. The

remaining actuation elements have uncovered failure modes that cause the

central actuator management process to command passive operation of the

device. Worst case surface control failures are considered to be those

that cause a jammed or stuck device.

Generally, passive device operation eliminates FMC capability, but safe

flight and landing is still possible. Therefore, covered actuation element

failures will result in full operational capability, while uncovered

failures will lead to central saflng action and a corresponding loss of FMC

capability.

Propulsion Group. The most critical propulsion system capability is

control of thrust adequate to support safe flight and landing. For the

candidate twin-engine aircraft, a certain level of single-engine

performance was assumed to be necessary. The additional propulsion system

capabilities primarily support the advanced fighter missions. For example,

the vectoring/reversing nozzles support short takeoff and landing, enhanced

supersonic maneuvering and other mission capabilities.

The capability of each propulsion system after failures was divided

into three major performance categories. Full capability means that all

functions are fully operational (full supersonic inlet control, full

afterburner thrust control, and full thrust vector and thrust reverse

capability). The normal capability category allows some degradation from

the full performance level. As a mlnlmua requirement the engine must be

capable of providing the full unaugmented thrust range. The nozzle and/or

the inlet can be operating in a fixed position mode. In the for-capability

category, the system cannot meet the normal category minimum requirements.

The engine has either suffered a serious malfunction and cannot be operated

or it can only run at a fixed thrust level.
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The performance levels of both propulsion systems must be considered

together to determine vehicle capability. A summary of the effects of

engine capability on aircraft capability is provided in table 4.2.1-2.

Table 4.2.1-3 presents the results of the failure analysis of the

propulsion control elements for a single engine.

For the most part, the propulsion sensing redundancy management is

assumed to allow fail-operational and fail-safe failure protection. This

includes the engine core sensing covered by the analytic redundancy

techniques.

Propulsion computing operates like flight-control computing in failure

situations. All computing functions are fully operational until the

failure of one of a remaining pair of FTP channels, at which time

performance is reduced below the normal capability level.

Some standard assumptions and ground rules were used in the failure

analysis for the propulsion actuation functional blocks. A common

propulsion actuator was used for all devices. All but a fraction of the

propulsion actuation element failures are detected by the self-test

processes. These covered failures result in the disengagement of one

actuator channel, but the device still has full operational capability via

the remaining channel. If the remaining channel then suffers a covered

failure, disengagement causes the device to move to the preferred fixed

position.

Failures not detected by the self-test processes cause the central

actuator management process to command the propulsion device to the

preferred fixed position. The consequences of the rare mechanical jam of

the main actuator ram are Included In the special considerations column of

table 4.2.1-3.

Communications. All of the major control functions depend on data

transfer provided by network operation. Communication device failures

primarily affect sensing and actuation functional blocks. That is, their

primary function of sensing the environment or moving actuators for the

control function is interrupted by the communication failures.

Table 4.2.1-4 summarizes a hlgh-level failure effect study for the

elements making up an I/O network. Two general failure modes were
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Table 4.2. 1-3.

Function

Inlet sensing

Function Failure Analysis- Propulsion Control Loss Effect

Propulsion
system

(Vehicle) Special considerations

Duct static pressure Normal (SFL)

Normal shock static pressure Normal (SFL)

Normal shock static pressure Normal (SFL)

Fan face sensing

Fan face pressure LOW (SFL)

Fan face temperature Low (SFL)

Full operation with 4 of 5 sensor types Run/off if
Engine core sensing only 3 sensor types available m engine core

Fan speed Full (FMC)

Compressor speed Full (FMC)

Burner pressure Full (FMC)

Fan turbine inlet temperature Full (FMC)

Afterburner pressure Full (FMC)

Pilot shut down of engine if failure detection
Throttle command sensing LOW (SFL) process doesn't detect last sensor failure

L

Propulsion corn puting Low (SFL)

Active failure mode may cause reduced thrust
Inlet control operation at subsonic speed

Upper ramp Normal (SFL)

Inner ramp Normal ($FL)

Bypass ring Normal (SFL)

Vane control

Fan guide vane

Compressor guide vane

Main fuel control

Metering valve

Flowmeter

Low (SFL)

Low (SFL)

Low (SFL)

Low (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Fuel shutoff

A/B fuel control

Zone metering valve-

Zone fuel shutoff

Light off detector

Nozzle control

Lower flap

Upper flap

Convergent nozzle

Active failure mode may cause flameout or
compressor stall

i

Passive fadure unsafe in conjunction wtth active
metering valve fadure
Active failure mode may cause
overspeed/overtemp or flameout

Active failure mode requires engine shutdown

Active failure mode requires engine shutdown

Active failure mode may cause overspeed or
corn pressor stall
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Table 4.2. 1-4. Communication Device Failure Summary

Device type

Network node

Fault type

Passive

Fault effect

Loss of comm to all downstream
devices

Nw unusable

Node does not obey
reconfiguration command

Actwe

Loss of corn m to/from all
Network link Passive downstream devices

NW unusable or loss of comm to
Actwe all downstream devices

Root link Passive NW unusable

Active NW unusable

Network _nterface Passive NW unusable

Active

Passive

Active

Passive

Active

DIU Link

DIU

NW unusable

Loss of comm to DIU and all

serviced devices

NW unusable

Loss of comm to DIU and all
serviced devices

NW unusable
ACtuator
Command values corrupted
Sensor values corrupted

Repair action

Rebuild network around failed
node

Rebuild network around failed
node

Rebuild path around failed link

Rebuild path around failed link

Switch to alternate root link

Switch to alternate root

linklreconfigure old root node
to disable old root link

Switch to alternate root link

Switch to alternate root
link/disable old root link at old
root node

Disable DIU hnk at servicing
node

Disable DIU link at servicing
node
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considered, passive and active. The postulated active mode was considered

to have a worst case effect on network operation. Communications device

failures can affect sensors and actuators on one DIU, a subset of the DIUs,

or all the DIUs on a network. This depends on the device failure mode and

the location of the failure in the active network.

Network operation during failure recovery can cause system failure in

several ways. The three most significant have been termed temporary

exhaustion, nearly coincident network - sensor/actuator recovery, and

nearly coincident dual network recovery.

Temporary exhaustion failures occur when device failures leave the

system without enough good devices to safely fly during a subsequent

network repair activity.

In a nearly coincident network recovery, a voting process is

temporarily without enough good devices to outvote the faulty device. Bad

output is assumed to propagate to the control function, causing loss of

safety.

Nearly coincident dual network recovery is a straightforward case in

which both networks undergo repair at the same time. Since there are only

two networks, all affected redundant sensing and actuation is lost during

the mutual repair period. All three of these network operation situations

are assumed to lead to loss of safety because of the effect on safety-

critical sensing and actuation.

4.2.2 Reliability Results

The functional block organization of the system elements used for

failure analysis was also used for reliability modeling. Each of the

reliability models covers a section of the system containing the sensing,

actuating, or computing elements needed for a system control function.

Data transfer elements were included in the section models where their

failure had a permanent effect.

The reliability models were used to estimate the likelihood of the

failure situations identified during the failure analysis. Each section

model includes the local effect of hydraulic system, electrical power
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system, and network failures. The element failure rates and other related

information used in the evaluation are listed in reference 9.

To indicate potential problems with the network operation, some

conservative assumptions were made about the temporary effects of network

element failures. All network element failures, regardless of failure mode,

were assumed to cause loss of all devices on the entire network during the

repair period. To scope the hazard it was initially assumed that all

repair periods are 1 sec long.

Similarly, a special concern was the hazard associated with active DIU

failure modes. To assess the potential problem, a fixed fraction of all

DIU faults were assumed to be active failures.

The contribution to loss of safety from the propulsion system wa_ based

on situations where failures cause one system to have less than normal

performance capability. This value was then used to estimate the

likelihood of the unsafe situation in which both systems have less than

normal performance.

The model results for the loss of safe flight and landing capability

are shown in table 4.2.2-1. The results are divided into functional

cateEories to show how the loss of specific categories contribute to the

loss of safety. Details of the results are presented in reference 9, some

hiEhliEhts are reviewed below.

A few failure sequences dominated the safety unreliability for the

candidate architecture, preventing it from meetinE the system requirement.

The predominant sequence was loss of body motion sensin E in a temporary

exhaustion failure. This two-failure situation occurs when a node or DIU

fails, leavlnE the system vulnerable to subsequent repair activity on the

other network. _Jhen the second failure causes the other network to shut

down for repair, only two rood sensors are accessible instead of the

minimum set of three required for safety. Key assunptlons in the temporary

exhaustion failure analysis are that the network repair exceeds the time

the system can tolerate loss of control and that all network element

failures lead to a long repair period.

The other dominant loss of safety sequences are associated with surface

control. The first situation is a Jammed or stuck sinEle surface. The
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Table 4.2.2-1. Safety Reliability

Functional block Probability x 10 .7

FC sensing

Pilot ,0023

Body motion 5,08

Airflow .0078

FC corn put=ng .012

FC surface control

Pitch .19

Roll .38

Yaw 19

Hydraulic power .036

Dual propulsion control .0076

=

Total 5.9
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second dominant surface control situation is a pair of critical surfaces

failing passive.

The element failure modes that take part most often in surface control

failure sequences are undetected actuator channel failures and mechanical

jam failures. Undetected failures include actuator processor or position

sensor faults not covered by the local redundancy management, as well as

active DIU faults. It should be noted that there is a large uncertainty

associated with the probability of these failures. For the nominal values

used in this analysis, the surface control failure sequences were

significant to aircraft safety.

The full mission capability unreliability for the system is shown in

table 4.2.2-2. Details are presented in reference 9, and a short summary

is covered below.

Early evaluation results showed that sequences with one- and two-

element failures dominated the loss of mission capability for the candidate

architecture. The only flight control section models that could affect

mission capability at this failure level were those that evaluate the

conditions which lead to a single passive surface. For this reason many

flight control sections were not used in the mission capability evaluation.

The mission success likelihood was unsatisfactory for the candidate

architecture. The major area of weakness was failures leading to central

actuator management action to deactivate actuation devices. These are all

cases in which full mission capability is lost at first failure. The

specific failures consisted of active DIU failures, undetected actuator

controller faults, and propulsion actuator control valve jams. The

parameters associated with all of these failures have a large uncertainty.

The reliability aspects of the candidate architecture were not

completely modeled. However, the results were carried far enough to show

the need to change the design concept to better meet the reliability

requirements. The key safety concern is that certain two-failure sequences

cause loss of capability. Certain single failures could also cause loss of

mission capability.
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Table 4.2.2-2. Mission Capability Reliability

Functional block

FC surface control

Pitch

Roll

Yaw

Propulsion system (per engine)

Fixed inlet

Fixed guide vanes

Engine core sensing

Core fuel metering .016

Afterburner metering .076

Fixed nozzle

Engine computation

Propulsion DIU active fault _

Aircraft total

*NOt in models

Probability x 10 "4

.18

.36

.18

.046

.031

.00066

.045

.0015

.11

1A
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4.3 CANDIDATEPEEFORMANCEEVALIIATION

The steps in the performance analysis carried out on the IAPSA II

candidate system architecture are shown in figure 4.3-1. These steps are

described in reference Ii.

The control law design effort defined the necessary application timing

requirements. The design effort defines the update rate needed for

satisfactory performance of each control function. The fundamental

performance requirement is to perform all the computing and I/O activity

defined by the design effort in the available update period.

Control law performance is affected by the end-to-end time delay

between the reading of a sensor and the start of the resulting actuator

movement. This time delay interval is illustrated in figure 4.3-2 for a

specific sensor/actuator pair. The effect of time delay on control law

performance ranges from imperceptible to rough handling characteristics to

loss of control in extreme cases. A time delay value of one control cycle

period or frame was assumed to be the criterion for satisfactory IAPSA II

performance. The figure also illustrates deadline margin, which measures

how close the control cycle activity is to exceeding the cycle completion

deadline.

The control law design is usually based on a sampled data approach that

implicitly assumes uniform sampling periods or regularity in the control

cycle repetition rate. The important control cycle actions with respect to

lack of regularity or jitter are the reading of sensors and commanding of

actuators.

4.3.1 Development of Tining Model

The performance model was developed in three distinct, sequential

phases. In these phases the application timing data was built up and

organized manually using simple timing charts. Situations involving

variable timing needs or contention for shared resources were not

considered until development of the simulation model. Details of the

timing model development are presented in reference 9; highlights are

discussed below.
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The application activity vas organized according to the computing

subfunctlon allocation defined earlier. All functions vlth the same update

rate were combined into a single rate group. That is, the computing and

I/0 activity for all the functions in the same rate group were handled

together. Therefore, if more than one function needs to communicate with

the same DIU, the DIU is accessed only once, reading all sensors or

commanding all actuators needed by the functions in that rate group. This

consolidation of message traffic reduced the I/0 demands of the

application.

The initial timing phase assumption was that the control cycle for each

application rate group starts with the input I/O activity needed by the

rate group, followed by the compute activity, and finally by all output I/O

activity. This particular organization of the I/0 activity is referred to

as separated I/O.

I/O activity was assumed to be nonpreemptable; once started it runs to

completion. A sequencing and control function controls access to the

single I/O network, vhlch is shared by all rate groups. Activity from each

rate group is executed in order of priority, with the fastest rate first.

In contrast to the single shared I/O network, the computing for each

application rate group was assumed to have its own dedicated processor.

The computing duration was based on execution of the allocated control

subfunctlons on a 3 Hips processor. The mean computing workload for each

control function (less the allowance for growth) was based on section 3

data.

The remaining initial model assumptions dealt with the I/O activity

duration. The two major elements are DIU processing and the duration of the

command and response messages. The DIU requires some overhead processing

time to decode, verify, and act on command messages and prepare the

response message. Times were assumed for all of these operations and used

in the timing buildups.

The second major I/0 activity element is the duration of the command

and response messages sent on the I/0 network. A primitive format was

initially assumed for these messages, vhlch together with the network

transmission rate of 2 Hb/s was used to estimate the timing elements.
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There were two conclusions at the end of this initial timing

development phase. First, the flight control application computing rate

groups would contend for the computing processor. Second, it was clear

that the engine control group was very lightly loaded by the application

when compared to the flight control group.

The second phase in the performance model development added more detail

to the I/O activity modeling. One important characteristic of AIPS

operation is the exact voting of output data and the source-congruent voted

exchange of input data across FTP channels. The model of I/O activity

duration was expanded to include this voting process, which is accomplished

by the IOP using the data exchange.

Before sending actuator command frames, the IOP votes all of the

associated data while loading the IOS. Similarly, after receiving all

sensor response frames, the IOP distributes data to all FTP channels via

the data exchange. The speed of the data exchange used to calculate the

duration nf IOP involvement in the IlO activity was 6 Us per word for

Bloading the IOS and 8 Us per word for unloading the IOS.

In the second phase, each rate group was assumed to have its own CP and

IOP. The application rate group computing was explicitly allocated to the

CP. Also, the command/response message formats were updated to the actual

AIFS network protocol. The format also defines the amount of data that

must pass through the data exchange for each actuator command frame and

sensor response frame.

The result of these changes was additional contention for the processor

in the flight control group. The engine control group continued to exhibit

no apparent timing problems.

In the third phase of the performance model development the overall I/O

activity vas reorganized by grouping the input I/0 activity and output I/0

activity into a single network activity per rate group. This II0

organization is referred to as grouped I/O. The transmission of the

actuator commands from the previous control cycle is combined with the

transmission of the sensor read commands for the current control cycle.

This reduces the loading on the I/O network because VIUs that have both

sensors and actuators are now onlY accessed once per application cycle.
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A control cycle begins with the grouped I/O activity that transmits the

commands from the previous cycle and requests sensor data for the current

cycle. The final change to the model was the assumption of a single CP and

IOP, which must be shared by the different rate groups. The control

function allocates the CP or the I0P to the fastest rate group needing

service.

The data showing the status of the developed timing model at the end of

the third phase are shown in figures 4.3.1-I through 4.3.1-3. The effect

of the change to grouped I/O is to reduce somewhat the network utilization

and to increase the system time delay. As a result of the change, the time

delay was approximately one update period.

The performance data developed at this point formed the basis for the

simulation model. Certain key interactions due to resource contention,

fault processing, etc., were to be evaluated via simulation.

4.3.2 Critical Performance Issues

High-level performance-related validation issues were defined for the

candidate architecture. These critical issues involve ways that timing

performance can prevent safe operation. Because special situations or

operating circumstances can be a key factor, these issues were identified

in time to drive the development of the simulation model. Thus, they can

be studied early in the design cycle when the cost benefit ratio for

improvements is very favorable.

Two performance-related issues were identified for this effort. The

first is the effect on performance of the relative phasing of the

application activity and the system FDIR activity. The second is the

effect on the application activity of the IlO network repair actions.

The first concern is whether certain phaslngs between scheduled

application executlon and the FDIR process can significantly degrade

performance. If so, a mechanism to control the relative phasing will be

required.

The second concern deals with the effect of network repair actions.

Each major group in the reference configuration has two reconfigurable I/0

networks. The sensors and actuators are distributed between these networks
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Rate

DIU operaUons

SR AC ASC AS

100Hz

$1 6

$2 6

OFL 1 1 1 1

OFR 1 1 1 1

IFL 2 1 1 1

IFR 2 1 1 1

TEL 1 1 1 1

TER 2 1 1 1

Totals 21 6 6 6

50Hz

$1 2

$2 2

CP1 3

CP2 3

CDL 1 1 1

CDR 1 1 1

RL 1 1 1

RR 1 1 1

N 1 1 1

LER 3 3 3

Totals 10 8 8 8
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$1 1

CP1 1
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for fault-tolerant operation. When a failure brings down one network the

application continues using the sensors and actuators accessible via the

other network. If a fault occurs on the second network before completion

of first network repair the result is loss of control. Thus the network

repair duration is a critical issue.

Another major concern is the interaction between the repair activity

and the application activity. The repair algorithms involve many

processing and IlO activity steps using the IOP and the network. Timely

execution of repair is affected by the application's need to communicate

over the unfaulted network, which also involves IOP processing. The timing

performance of the application must be acceptable during the repair

activity. Because of the compl4xity of the interaction of the repair

activity and the application, the duration and effect of the repair

activity is addressed most effectively with simulation techniques.

Two IlO network repair strategies were evaluated: one-shot and full

regrow. The one-shot strategy is characterized by rapid diagnosis and

specific repair actions. Full regrow is the same process used to grow the

I/O network at power on. It uses a robust sequence of steps to grow a path

to all good devices reachable with the unfailed network elements.

4.3.3 Simulation Experiments

This section describes the experiments performed with the IAPSA II

simulation model. The experiments involved two separate models: a model

of the flight control group and a model of the engine control group. This

allowed comparison between a large, heavily loaded system and a relatively

small, lightly loaded system. Details of the experimental procedure are

presented in reference 9.

IlO Net-,,orkRepair Time (Experiment 2). The objective of experiment 2

was to measure the time needed to successfully return a network to service

after it experienced a network fault. This experiment also evaluated the

effect of the additional network repair processing on the timing

performance of the application. Each active link in both the flight

control and engine control networks was failed passively in this

experiment.
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I/O Scheduling (Experiment 3). The purpose of experiment 3 was to

evaluate the effect of the I/O scheduling mechanism on the performance of

the application during normal operation. The system services software

provides two mechanisms for scheduling the application I/O activity.

During the performance simulation activity, we referred to these two

alternatives as on-demand I/O and scheduled I/O. In our simulations of the

on-demand I/O capability, the application process makes an I/0 request at

the beginning of each cycle and then suspends itself. When the I/O has

completed, the application process resumes. In our simulations of the

scheduled I/0 alternative, the system software executing in the IOP makes

the I/O request periodically. The CP application computing is scheduled by

the completion of the I/O activity each cycle.

The two I/0 activity organization schemes, separated I/O and grouped

I/O, were also simulated. Experiment runs were made for each I/O

scheduling mechanism and I/0 activity organization combination.

FDIR/Application Phasing (Experiment 4). The objective of experiment 4

was to evaluate the effect of the relative phasing of the application

activity and the system FDIR process. The FDIR and application demands

were evaluated during normal operation. The system time scheduler assumed

for this study has a Eranularity of 1 ms. That is, time-scheduled tasks

can only be specified to the nearest even millisecond. The ten specific

relative phasing situations possible because of the 10-ms minor frame

period were simulated.

CP, IOP, I/O System, I/O Network Utilization (Experiment 5). The

purpose of experiment 5 was to estimate the utilization of the key

candidate system resources during normal operation. Major areas of

resource contention were modeled for this experiment. This includes

contention between the different application rate groups, as well as the

previously described contention between the application rate groups and the

time-critical FDIR function. A preemptive priority sequencing and control

algorithm was modeled to control processor allocation.

The experiment identification data are shown in table 4.3.3-1.

Because application demands will not necessarily grow uniformly across

all the system resources, growth capability was assessed by instrumenting
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Experiment
Table 4.3.3-1. Experiment Configuration

Configuration ID Layout FDIR coordination I/O scheduling I/O grouping

4 Flight control No On demand Grouped

4 5 Flight control No On demand Separated
6 Flight control No Scheduled Grouped

10

11

12

13

14
15
16

Flight control regrow
repair strategy
Flight control one-shot
repair strategy
Engine control regrow
repair strategy
Engine control one-shot
repair strategy

Engine control
Engine control
Engine control

Yes

Yes

Yes

Yes

No
No
No

Scheduled

Scheduled

On demand

On demand

On demand

On demand

Scheduled

Grouped

Grouped

Grouped

Grouped

Grouped

Separated
Grouped
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four key resources: CP, IOP, I/O system and the I/O network. It should be

noted that I/O system utilization starts when an application I/O request is

made, and ends when all application activity is complete and the system can

immediately respond to a new request. Deadline margin is a figure of merit

used to indicate how well the system was meeting its periodic control cycle

requirements; that is, how close the system was to missing a time-critical

action. The time delay figure of merit is an overall indicator of time

delay for a particular rate group. Deadline margin and time delay were

described in section 4.3 and illustrated in figure 4.3-2.

4.3.4 Simulation Model

Boeing selected the Discrete Event Network (DENET) simulation

language to develop the simulation model for the IAPSA II reference

configuration. DENET was developed at the University of Wisconsin Computer

Science department by Dr. Miron Livny. It is a discrete event simulation

language based on the Discrete Event System Specification modeling

methodology. This methodology is complemented with the MODULA II

programming language, which alloys the DENET tool to incorporate

algorithms.

DENET simulations are composed of discrete event modules (DEVM) and

arcs, which connect outputs of one DEVM to inputs of another. Each DEVM

models some function of the system; the function can be either a high-

level abstraction or a very detailed emulation. DEVMs receive input and

generate output through ports. A simulation model consists of a group of

DEVMS connected wlth arcs. Each instance of a DEVM is characterized with

input parameters. The input parameters allow the modular to parameterize

the specific DEVM behavior so that modular building blocks can be

supported. The DENET language is described in reference 12.

The DENET simulation is set up vlth a topology file that defines DEVMs,

their parameter values, and their interconnections. By implementing key

functions in DEVMs and defining appropriate arc definitions, a complete

simulation of the reference configuration was developed. Details of the

resulting IAPSA II DENET model are provided in reference 9. An overview of

the key DEVMs is presented next.
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The Processor DEVM models the sequencing and control functions that

execute on either the CP or lOP. This sequencing is based on a preemptive

priority scheme in vhlch the highest priority process acquires the

Processor until it completes or until a higher priority process becomes

ready. The Processor maintains a priority queue of processes waiting to

use the Processor. When a process completes, the first element of this

queue acquires the Processor. If a process makes a request to use the

Processor it is either inserted into the priority queue or it acquires the

Processor and preempts the currently running process, depending on relative

priority.

Overhead processing is necessary to accomplish the task sequencing and

control. This overhead can dominate a processor's activity, depending on

the sequence in which processes become ready to execute and the amount of

time needed to switch processes. A value of 0.300 ms was used to model the

time needed for sequencing and control overhead in the Processor DEVM. A

process switch was assumed to be an uninterruptible operation; once begun a

new request is not recognized until the completion of the first.

The I0 Service DEVM models the software functions that execute

primarily in the IOP. This DEVM interfaces with the input/output sequencer

(IOS) DEVM and the Application DEVM. The model focuses on the software

that performs the processing in response to an I/O request or the

completion of I/O activity. The complex IO Service process model resulting

from the initial simulation efforts is described in detail in reference 9.

Key operating features are indicated in figure 4.3.4-1.

The Application DEVM is a generic DEVM that models the functionality of

a single application rate group. The Application DEVM can be configured to

perform the workload of any flight control or engine rate group. Its

execution sequence can be configured for either on-demand or scheduled I/O.

The DEVM models data-dependent processing requirements using a normally

distributed workload distribution for the needs of each application cycle.

The IOS DEVN executes chains requested by the I0 Service DEVM and

collects data resulting from chain execution, t/hen commanded to start a

chain, the IOS DEVM sends command frames to the adjacent node and waits for

the response frames as needed until the I/0 activity is finished.
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The AIPSNODE DEVM models the I/0 network node that is used to construct

the mesh reconfigurable network. During normal operation, the AIPSNODE

DEVM acts as a rebroadcast element. Any activity received on an enabled

port is immediately retransmitted to all the other enabled ports. The

AIPSNODE responds to reconfiguration commands addressed to it by changing

its port configuration and then sending a response frame that contains the

node's status. This allows detailed modeling of the network repair

activity directed by the network manager.

The DIU DEVM simulates the network device to which the application

sensors and actuators are connected. The DIU DEVM models receipt of

messages from the application. The DIU model schedules the transmission of

a response message at a time consistent with the required DIU overhead

processing time. The DIU DEVM models the statistical variation of the DIU

processing time.

The Network Manager DEVM is responsible for maintaining Communications

between the application process and the DIUs. The IO Service DEVM notifies

the Network Manager DEVM when the application process encounters a

communication fault. From this point on, the IO Service does not execute

any application chains on the faulty IlO network until the Network Manager

notifies it that the repair is complete.

Prototype algorithms for the one-shot and regrow repair strategies are

implemented in the DEVM. A configuration item in the IO Service DEVM

dictates which type of strategy will be used in the current experiment to

repair the IlO network. This allows a common DEVM to be used for both sets

of experiments.

The simulation timing input parameters and listings of the DEVMs are

presented in reference 9.

4.3.5 SimulatlonResults

Experiment runs to satisfy the objectives of experiments 3, 4, and 5,

aimed at measuring performance during normal operation, were conducted

first. Later, experiment 2 runs were performed to evaluate performance

under certain network failure conditions.
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Experiments 3, 4, and 5. The purpose of experiment 3 was to evaluate

the effect of different I/O activity scheduling and grouping options while

experiment 4 evaluated the effect of the relative phasing of the high-

priority system FDIR process and the application activity and experiment 5

measured utilization of key resources during normal operation. Instead of

making separate sets of runs for each experiment, the utilization of four

key resources, the CP, IOP, I/O system, and the I/O network, was measured

during experiment 4 runs. Additionally, all experiment 3 alternatives were

evaluated in the experiment 4 runs. In this way a single set of

experiment 4 tests satisfied the objectives of experiments 3, 4, and 5.

For two of the flight control configurations (4, on-demand, grouped and

5, on-demand, separated), the application was unable to meet any control

cycle deadlines. The simulation result showed that the flight control

group was overloaded to the point that the application could not perform

its function using either of these organization options. Consequently,

configuration 4 and configuration 5 were eliminated as possible candidates.

A summary of the experimental data for confi&,uration 6 (scheduled -

grouped I/O organization) is presented in table 4.3.5-1. Details of the

comparison between phasing alternatives are discussed in reference 9. A

timing chart for the phase 0 configuration timing usin E Bean values is

shown In figure 4.3.5-1.

The workload on the engine control group is substantially less

demandln E than that on the flight control functions. Consequently, the

engine control computer is able to meet the deadlines of the engine control

functions in all of the I/O scheduling and I/O groupings alternatives.

The deadline marElns and utilization values for configurations 14, 15,

and 16 are illustrated in tables 4.3.5-2 through 4.3.5-4. No data are

available for phases 1, 2, 3, 7, and 8 of confiEuratlon 15 because a

simulation error prevented correct modeling of the overrun policy.

Experiment 4 showed that the phasln E of the FDIR and the application is

critical, especially in heavily loaded cases. A means must be provided to

control the relative execution phasing of the FDIR process and the

application. Additionally, the simulation showed that the system loading
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Table 4.3.5-1. Experiment 4 Configuration 6 Summary--Flight Control Group

Phase/ID

100-Hz
minimum
deadline

margin, ms

2.934

2.704

2.704

50-Hz
minimum
deadline

margin, ms

7.007

Missed
seven
deadlines

Missed
seven
_l?Adlines
Missed
seven
deadlines

25-Hz
minimum
deadline

margin, ms

15.538

10.188

10.188

CP

utilization, %

86

86

86

lOP

utilization, %

72

72

72

I/0 system
utilization, %

80

93

88

VO network
I ., ,

iutilization, %

28

28

28

3 2.704 10.188 86 72 83 28

4 3.370 0.319 10.320 86 75 78 28

5 0.508 1.287 10.267 86 75 84 28

6 0.653 7.848 9.896 86 75 79 28

Missed
7 0.551 seven 10.188 86 75 92 28

deadlines

8 0.851 10.188 86 72 91 28
Missed
seven

de_n_l_!ines

0.6251.9059 11.529 86 73 87 28
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Table 4.3.5-2. Experiment 4 Configuration 14 Summary

Phase/ID

100-Hz
minimum
deadline

margin, ms

5.657

8.440

6.440

6.440

7.140

7.140

7,140

7,140

4.540

4.840

50-Hz
minimum
deadline

margin, ms

13.598

14.898

14.898

14.898

15.560

15.560

12.998

13.298

14.041

25-Hz
minimum
deadline

margin, ms

31.941

33.241

33.241

33.241

33.241

31.341

31.341

31.641

32.384

CP

utilization, %

51

48

48

48

51

51

51

51

51

lOP

utilization, %

53

58

58

58

58

58

58

56

56

12.598 30.941 51 55

1/Osystem
utilization, %

57

46

46

46

39

39

39

56

5O

67

I/O network
utilization, %
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Table 4.3.5-3. Experiment 4 Configuration 15 Summary

Phase/ID

100 Hz
minimum

deadline

margin(ms)

50 Hz
minimum
deadline

margin(ms)

25 Hz
minimum
deadline

margin(ms)

CP
utilization

lOP
utilization

I/0 system
utilization

I/0 network
utilization

0 4.134 9.996 19.867 51 84 96 7

No data available

4 5.146 9.889 29.037 50 87 93 7

5 6.144 11.647 28.612 51 86 94 7

6 6.144 11.998 29.337 51 86 95 7

7

8
No data available

4.743 12.300 30.680 51 87 97 79
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Phase/ID

100-Hz
minimum
deadline

matin, ms

5.841

7.440

7.441

Table 4.3. 5-4.

50-Hz
minimum
deadline

matin, ms

13.815

16.115

16.115

Experiment 4 Configuration 16 Summary

25-Hz
minimum

deadline

matin, ms

32.192

34.492

34.492

CP

utilization, %

42

42

42

lOP

utilization, %!

53

55

55

I/0 system
utilization, %

60

62

52

3 7.141 16.115 34.492 42 55 42 7

4 7.140 15.815 34.192 42 58 42 7

5 7.140 15.815 31.592 42 58 42 7

6 7.140 13.215 31.592 42 58 42 7

7.140 42

42%

42

13.515

14.258

31.892

32.635

56

56

5531.19212.815

4.540

4.840

59

54

7O

I/O network

utilization, %
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was more severe than indicated by the manual estimates; this was primarily

due to resource contention and task sequencing and control overhead.

Experiment 2. The purpose of experiment 2 was to measure the time

needed to successfully return a faulty network to service. In addition,

the experiment evaluated the affect of the repair processing on

application performance. Experiment 2 faults were inserted at a random

time relative to the major frame for each run. For each link the

experiment was repeated 50 times.

The first set of runs (configuration 11 and configuration 13)

incorporated the one-shot repair strategy. The IlO network mean out-of-

service times for the flight control group are shown in table 4.3.5-5. A

summary of _he application performance measures for each link failure

sequence is also illustrated in the table. The CP utilization is not

included in the summary because it is not affected by the network repair

activity. In addition, the IlO network utilization is not included because

it is not affected on the "good" network, while the repair activity has

exclusive use of the failed network. A discussion of some of the

differences observed when comparing table 4.3.5-5 to the normal flight

control group results in table 4.3.5-1 are presented in reference 9.

The I/O network out-of-service times for the engine control

configuration are shown in table 4.3.5-6. These times are faster than the

flight control configuration because there is more idle IOP capacity to

perform repair activity. A summary of the deadline margin and utilization

data for each link failure is also shown in the table.

The one-shot repair strategy is able to diagnose and repair only a few

active network failures. The duration of network repair activity when a

full regrow strategy is invoked was measured with the next set of runs.

This provides a reasonable approximation of the repair time for active

failures, because a more time-consuming regrow action must be used to

guarantee a working network when the other strategy fails.

The I/O network out-of-service times for the flight control group

(configuration 10) are shown in table 4.3.5-7. The significant difference

between this repair strategy and the one-shot strategy is that the out-of-
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Failed
link

Table 4.3.5-5. Exper_rnent 2 Configuration 11 Summary

Out-of-
service time

mean, ms

100-Hz
minimum
deadline

margin, ms

50-Hz
minimum
deadline

margin, ms

28-70 17.1 O0 2.927 2.549

70-71 35.034 2.959 2.523

70-79 35.204 2.897 2.618

70-87 34.961 2.835 2.531

71-72 37.562 3.003 2.286

71-75 35.174 2.914 2.531

79-78 2.94534.903

79-80 35.474 2.851

87-83 34.338 2.972

87-86 36.071 2.930

72-73 37.562 2.689

75-74 37.562 2.884

2.559

2.488

2.607

2.556

25-Hz
minimum
deadline

margin, ms

lOP

utilization, %

11.355 78

11.561 78

11.189 78

11.387 78

11.153 78

11.267 78

11.134 78

11.146 78

79

i0 system
utilization, %

68

68

68

68

68

68

68

68

11.418 68

11.167 78 68

10.946 78 692.570

2.577 10.946 78 69

11.164 78 6875-76 34.160 2.950 2.410

78-77 34.140 2.948 2.471 11.309 78 68

80-81 34.140 2.948 2.471 11.309 79 68

80-64 34.562 2.967

83-82 34.160 2.950

37.562 2.92586-85

2.485 10.946 78 68

2.410 11.164 79 68

2.649 10.946 78 68
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Failed link

Table 4.3.5-6. E:_

Out-of-service

time mean, ms

100-Hz
minimum

deadline

margin, ms

Jefiment 2 Configuration 13 Summary

50-Hz
minimum

deadline

margin, ms

25-Hz
minimum

deadline

margin, ms

lOP

utilization, %
I/O system
utilization, %

• i i

28-70 7.507 7.141 15.598 34.022 59% 39%

70-71 26.000 7.040 14.749 33.078 63% 38%

70-72 22.802 7.142 15.595 33.989 64% 38%

70-73 23.301 7.147 15.448 33.996 63% 39%
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Failedlink

28-70

70-71

70-79

70-87

71-72

71-75

79-78

79-80

87-83

87-86

72-73

75-74

75-76

78-77

80-81

80-84

Table 4.3.5-7. Experiment 2 Configuration 10 Summary

Out-of-
service time

mean, sec

1.0889

100-Hz
minimum
deadline

margin, ms

2.995

50-Hz
minimum
deadline

margin, ms

2.582

25-Hz
minimum
deadline

margin, ms

11.124

lOP
utilization, %

79

I/0 system
utilization, %

68

1.0853 2.691 2.703 10.914 78 68

1.0834 2.893 2.584 11.206 78 68

1.0831 2.928 2.560 11.257 78 68

1.0808 2.905 2.603 11.328 78 68

2.742 2.723

2.342

2.667

1.0878 10.887

10.964

11.291

2.965

2.868

1.0778

1.0838

2.916

1.0732 2.928 2.597 11.571

1.0981 2.779 2.561 10.930

1.0934 2.977 2.432 11.167

1.0808 2.456 11.103

2.9631.0802

78

78

78

79

78

78

78

782.371 11.548

68

68

68

68

68

69

69

68

1.0919 2.974 2.641 11.526 78 68

1.0710 2.765 2.539 11.787 79 68

1.0872 2.935 2.754 10.914 78 68

83-82 1.0808 2.880 2.454 10.944

86-65 1.0949 2.954 2.192 11.052

79

78

68

68
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service times are substantially larger. Some application performance

measures for this experiment are also summarized in table 4.3.5-7.

The out-of-service times for the engine control group (configuration

12) are shown in table 4.3.5-8. The full regrov strategy requires

significantly more time than the one-shot repair strategy for the engine

control group. The table also summarizes the application performance

parameters.

4.3.6 Experiment Observations

The simulation results presented an optimistic picture of the candidate

architecture performance. The system was assumed to operate near certain

hardware limits. When more realistic values for the system overhead

functions are available from proof-of-concept testing, the performance

measures will probably suffer. Furthermore, some key performance

interactions were not modeled in the performance simulation. These include

IC network operation and the operation of the shared bus in each FTP

channel.

The application sends time-critical data across the IC network. One

concern is the ability of the IC network to meet the tlme-critical end-to-

end data transfer requirements of the application during normal operation.

Since the IC network operates with unsolicited messages, it must be

periodically polled to determine whether any communication has been

received. This IC communications process executes on the IOP, which is

also responsible for the application IlO operation. Therefore, another

concern is the effect of IC network communications on the application I/O

activity.

For the application to complete its I/O and IC activity, it must

transfer data from the CP to the lOP through a shared bus. The shared bus

has tvo states, locked and unlocked. I/hen the shared bus is locked, access

to other users is blocked. A major concern is whether a lack of

coordination between the system processes in the CP and lOP can lead to

shared bus utilization problems. Thls is another potential cause of

serious degradation in the application performance. (Overall observations
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Table 4.3.5-8. Experiment 2 Configuration 13 Summary

Failed link

Out-of
service time

mean, ms

100-Hz
minimum
deadline

margin, ms

50-Hz
minimum
deadline

margin, ms

25-Hz
minimum
deadline

margin, ms

lOP
utUizatJon,%

I/0 system
utilization, %

28-70 170.261 7.141 15.598 34.022 59 39

70-71 161.781 7.040 " 14.749 33.078 63 38

70°72 160.137 7.142 15.595 33.989 64 38

70-73 166.640 7.147 15.448 33.996 63 39
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about the use of a performance tool to evaluate the candidate architecture

are discussed in section 6.)

4.4 REFINED ARCIHTECTURE

The candidate system evaluation effort described in section 4.2 and 4.3

demonstrated that the candidate was not capable of meeting the system

requirements. The predicted safety and mission unreliability values

exceeded the system constraints. Furthermore, the predicted timing needs

of the major control functions did not leave adequate growth capability.

The flight control group workload strained the system capacity in both

computing and IlO activity. As a result, the IAPSA II.candidate system

concept was refined to improve its performance and reliability.

Three approaches were taken to refine the candidate architecture to

better match the system needs. The first approach was to balance the

computing and I/O workload between the engine and flight control groups.

The preliminary timing estimates showed that the flight control group was

heavily loaded, whereas the opposite was true for the engine control group.

Shifting the system workload from the flight control group to the engine

control groups suggested an improved growth situation.

The second approach was to improve the system failure protection. A

goal for the refined configuration is to maintain flight safety with all

two-failure sequences and to maintain full mission capability with all

single failures. Steps taken to achieve these goals will be discussed later

in this section.

The final approach for refining the architecture was to reduce the

number of communication elements in the system. Large networks have

several disadvantages when compared to small networks. The preliminary

DENET simulation experiments showed how the size of the individual networks

dramatically affected the time needed to regrow a network. Another

negative characteristic of large networks is that the probability of

network repair action increases vlth the number of elements. Finally, from

a performance standpoint, when a fixed number of sensors and actuators are

spread across fewer interface devices, the number of transactions needed to

access them are reduced. Since the transaction overhead time is a big
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contributor to I/O activity duration, reducing the number will decrease the

I/O workload. In summary, reducing the number of communication elements

should improve both the performance and reliability aspects of the system

concept.

The resulting refined configuration is shown in figure 4.4-1. The most

significant change is the organization of system components into two major

groups organized around two computing sites, A and B, instead of three.

This configuration is physically similar to one of the options considered

for the candidate architecture in section 3.5. The two engine control

groups of the candidate architecture are collapsed into one. Functions are

reallocated to better balance the system.

4.4.1 Refined System Changes

The application computing functions were reallocated because the

performance analysis shoved that the flight control site was overloaded,

while the engine control sites were underutilized. Rather than change the

redundancy level of one of the two engine control sites, the refined

configuration was given two quadruple redundant computing sites. This

means that each site is suitable for safety-critical functions and that the

function reallocatlon process can be relatively unconstrained.

Furthermore, this new configuration will be more adaptable to a single-

engine vehicle.

The first step in changing the computing allocation was to combine the

control for both propulsion systems in site B. Next, the high-workload

trajectory-follovlng function was allocated to site B. Finally, the air

data functions were moved to site B, since the inlet control function uses

the highest air data rates and, in addition, this move helps reduce the

congestion on the group A IlO network.

The configuration and functlonallty of the candidate propulsion system

were reevaluated during the refined configuration effort. Some changes

were made as a result of this study. The changes ranged from device

nomenclature adjustments to revised ground rules for the mission capability

and safety effects of propulsion subsystem failure conditions. An overview
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of the differences in the refined propulsion system definition is provided

in reference 9.

Data Distribution. There were many possible alternatives to the

candidate architecture data distribution approach. 0nly two data

distribution options were looked at in detail during the refinement effort.

One of these incorporated a minimum change to the candidate data

distribution concept, and the other replaced the mesh network with a set of

buses. Even in the bus option, the data distribution interface changes

were minor.

The first data distribution problem is that the I/O system growth

capability for the flight control group is inadequate. The I/0 activity

overload problem was addressed by reducing the number of transactions on

the flight control network. The first step, moving the air data sensors

off the flight control network, has already been mentioned. The next step,

consolidating the system DIUs, will have several beneficial effects. From

a performance standpoint, fewer DIUs means that fewer transactions are

needed to communicate with the system sensors and actuators. The amount of

data transferred that is directly associated with the devices is not

changed. However, the total amount of transaction overhead data, which is

proportional to the total number of transactions, is reduced. This change

reduces the amount of data passing through the data exchange and

transmitted over the bus.

There are reasons other than performance for reducing the number of

communication elements in the system. Large networks have more elements to

fail and require longer regrov repair times. Additionally, larger networks

can add to repair computation complexity and time. For these reasons,

reducing network size also provides a reliability benefit.

The candidate architecture uses two I/0 networks per group with the

redundant elements divided between them. Having two networks allows the

application to continue operating while one of the networks is being

repaired. As the number of networks increases, further dividing the

redundant system devices, there is eventually no need for inflight repair.

The aircraft can suffer the loss of an entire set of redundant devices and

still meet short-term reliability requirements.

116



For this reason, only two options for data distribution were considered

in the refined configuration study. These two options are shown in

figure 4.4.1-1. The natural redundancy in the system tends to separate the

sensors and actuators into four groups. This figure shows how two sets of

quadruple redundant enclosures would be connected with either two mesh

networks or four linear buses. The assignment of devices to enclosures for

these options is presented in tables 4.4.1-1 and 4.4.1-2.

I/O Network Option. The mesh network data distribution option is very

similar to the candidate architecture. The key changes are the

consolidation of network nodes and DIUs and the reallocation of system

devices. There are still two networks per major group. Figure 4.4.1-2

shows the layout of one of the group A I/0 networks. There are no

dedicated root nodes in this option; all root links are connected to nodes

that service DIUs.

The group B IlO network layout is shown in figure 4.4.1-3. Each group

B network is connected to elements on both engines. The air data sensors

and the throttle command sensors have been moved from the flight control

networks to group B. As with group A, there are no dedicated root nodes in

group B.

One big change in the network configuration is due to the dominant

reliability problem found in the candidate architecture. The reliability

evaluation of the candidate showed that this simple "brickwalled" scheme

easily satisfied system requirements, with the exception of the body motion

sensors. In the refined I/0 network option, the critical body motion

sensors are connected to both group A networks via dual-port DIUs. This is

shown conceptually in figure 4.4.1-4. A critical design requirement

generated by the cross connection approach in the refined configuration is

that no single failure in the dual-port DIU can cause simultaneous repair

activities on both networks. Note that the cross connection is only used

for the MID DIUs, where the reliability analysis showed it was required.

There are several alternatives for system operation with this cross-

connected configuration. These are discussed in reference 9.

Redundant Bus Option. An alternative data transfer system consists of

four nonreconfigurable linear buses. The number and arrangement of
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Table 4.4.1-1. Sensor/Actuator Computer Connection-Group A

Node/DIU assignments

Device

Body accelerometers
Body gyros
Pitch stick
Roll stick

Rudder pedal
Flap lever
Pitch trim
Roll trim
Yaw trim
Left canard

Right canard
Nosewheel

Leading edge
L outboard flaperon
R outboard flaperon

L inboard flaperon
R inboard flaperon
L TE flap
R TE flap
L rudder
R rudder

L outboard wing accel
R outboard wing aecel
L midwing accel
R midwing accel
L inboard wing accel
R inboard wing accel
FTP channels

(group A)

Forward

I I 1 1

1 I I I

I I I I

I I I

I I I

I I I

I I I

1 1 1 1

Mid

2 2 2 2

2 2 2 2

1 1
1 1

1 1
1 1

Right wing

I I

I I

1 I

1 1 1

1 1 1

1 1 1

Left wing

I I

I I

I I

I I I

I 1 I

1 I I

Tail

1 1
1 1
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Table 4.4.1.2. Sensor/Actuator Computer Connection--Group B

Device

Angle of attack

Angle of sideslip
Static pressure
Total pressure
Total temperature
Left throttle

Right throttle
Forward ramp
Aft ramp
Inlet bypass door
Forward ramp 3 static pressure
Normal shock total pressure
Normal shock static pressure
Nozzle area

Thrust reversing vane
Thrust vectoring flap
Fan face static pressure
Fan face temperature
Fan speed
Compressor speed
Burner pressure
Fan turbine inlet temperature
Afterburner pressure
Fan guide vane
Compressor vane
Fuel metering valve
Afterburner oore metering v_ve
Afterburner duct metering valve
Afterburner segment sequencer
Afterburner light off detector
Main fuel shutoff

NodelDIU assignments

Air

I 1 I I

1 1 1 1
1 1 1 1

1 1 1 1
1 1
1 1

1 1

Inlet

I I I I

I I 1 I

I I I i
I 1 1 I

I I I I

1 1 I I

Engine

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

Nozzle

I I I I

I I 1 I

I 1 I I
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Abbreviation=:
A airdata
RI rightinlet
RE rightengine
RN rightnozzle
LI left inlet

LE left engine
LN left nozzle

Figure 4.4.1-3. Group B I/0 Network Layout

Legend:
Device
interface
unit

Q Node

_7_FTP channel
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Figure 4.4.1-4. Body Motion Sensor Cross Connection
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enclosures, DIUs, and devices is unchanged. All of the redundant devices

are divided evenly across the four buses. Since the bus is not

reconfigurable, there are no network nodes in the system. Communication

over the bus system is carried out just as it is over the mesh network.

The same command/response protocol is assumed for the bus option. The data

distribution interface and the IO system services are therefore assumed to

be identical in this comparison.

The bus option illustrates the limiting case where the number of

networks in a system is increased to the point that reconfiguration after

communication faults is not necessary. A major benefit of this step is the

elimination of the complex I/O redundancy management software. Typically,

validation of large, complex software processes is difficult and costly.

Since the bus option does not include any of the network reconfiguration

functionality, it sidesteps any associated validation issue.

To allow a more straightforward comparison between the mesh network and

bus options, some configuration details were kept constant in both. These

are described in detail in reference 9.

Electric Power Distribution. The fault-tolerant electric power (FTEP)

system study configuration (ref. 13) was used as a baseline for the IAPSA

II refined configuration. FTEP used four distributed load centers

(electric load management centers (ELMC)) to provide electric power to the

critical users. Main aircraft power buses are connected to the ELMCs,

which monitor the airplane source and switch when necessary. Each load

center has an unlnterruptible battery bus for dc users that is tied to one

of two aircraft batteries.

The simplest connection alternative for a system that is primarily

quadruple redundant is one ELMC source per enclosure. This alternative was

broadly evaluated with satisfactory results in the candidate architecture

reliability study. Each enclosure has a single local power supply that

satisfies the bulk of all enclosure needs. Nith this single connection

organization, care must be taken when assigning electrical connections.

All elements that have a dependency relationship (devices, DIUs, buses, FTP

channels) must be connected to the same ELMC source. This guarantees that

when a single source is lost only one level of redundancy for any device is
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affected. Otherwise, loss of a single source could bring down more than

one redundant device via a dependency relationship.

The single power source alternative presented some special concerns for

the mesh network option that were not evaluated in the candidate

architecture analysis. Details of these concerns and their resolution are

provided in reference 9.

Actuation Changes. One area of concern in the candidate architecture

reliability study was surface actuation. The problems included two failure

situations resulting in a loss of safety and single failure cases that

caused loss of mission capability. Two major contributors were undetected

actuation channel failures and active DIU failures.

The first contributor, undetected channel faults, was addressed by

increasing the redundancy of the actuator processor and associated position

sensor. The operating concept was changed to require two-processor

agreement to drive the surface. Active DIU faults were addressed by

changing the actuator communication concept so that the actuator processor

verifies the command message that contains its position command. This end-

to-end check guarantees that a good actuator channel will not use a

corrupted command. These changes are discussed further in reference 9.

4.4.2 Reliability Evaluation

The two data distribution options for the refined configuration, mesh

network and bus, were evaluated to verify that the changes allow the system

to meet its reliability requirements. The reliability measures evaluated

included safe flight and landing, full mission capability, and sustained

operational capability. The first tvo measures vere used in the

reliability evaluation of the candidate system described earlier. The

sustained operational capability measure was used to compare the two

options, emphasizing their ability to operate with failures.

Some different reliability modeling techniques were used in the refined

system evaluation. The first technique was explicit truncation of the

models at a specified number of failures. Truncation, which greatly

simplifies the reliability models, is based on the fact that the dominant

system failure sequences involve a small number of element failures.
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Contributions to system unreliability from sequences with a greater number

of failures are less likely and therefore not as significant. All system

states having more than a certain number of element failures are modeled in

an approximate manner. For our study, safety model truncation at the third

failure level captured the dominant system failure sequences. The mission

and sustained capability models were truncated at the second failure level.

The baseline truncation technique is shown in figure 4.4.2-1. The

technique is based on the CSDL approach described in reference 14 and used

for the Computer-Aided 8arkov Evaluator (CAME) program. The system states

are categorized by how many failures have occurred in the system and

whether the system is operational or failed. In the example shown in the

figure, the dominant system failure sequences involve three or fewer

element failures.

Further simplifying techniques were used that amounted to modification

of this baseline truncation technique. The justification for these

techniques is that the relative likelihood of certain key system failure

sequences is important to the evaluation of a system's strengths and

weaknesses. Therefore it is not usually necessary to know the specific

failure situation probability with more than one- or two-digit accuracy.

One simplification ignores some sequences that contribute to the system's

dominant failure situations when they contain more than a certain number of

failures. Another simplifying technique includes only the most damaging

transitions possible when modeling common element failures. Details of the

considerations and consequences of these modeling techniques are presented

in reference 9.

Critical Assumptions. The refined configuration models covered some

new situations not modeled in the candidate architecture. One difference

in the mesh network option was the greater likelihood of system failures

involving slngle-network operation. Once an entire network becomes

inoperative, failure of a critical sensor or a communication device on the

remaining network causes a loss of safety. In the first case, the two

remaining sensors disagree, and in the second case no critical sensors or

actuators are accessible during the subsequent network repair.
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Another new modeling situation was operation of the mesh network system

with MID enclosures cross-connected to each network. The purpose of the

cross connection is to allow the skewed sensors to be accessed from the

other network to eliminate vulnerability to temporary exhaustion. The few

special situations that leave the system vulnerable to temporary exhaustion

required explicit modeling.

Because of the changes in the surface actuator configuration and

operation the controller and communication device failures cannot affect

safety until the fourth failure level, except for temporary exhaustion

situations. Similarly, these failures can't affect mission capability

until the second failure level. The refined configuration modeling effort

assumed that the associated redundancy management was perfect and took

advantage of model truncation at the appropriate failure level to greatly

simplify the resulting models.

Propulsion system device criticality assumptions were different for the

refined configuration. Some of the differences were due to the

configuration changes between the candidate system and the refined

configuration, while other differences were due to the operational changes

defined during the propulsion system review effort. The major differences

are outlined in reference 9.

Results. The results of the safety model evaluation are summarized in

table 4.4.2-1. The loss of safety probability is dominated by group A

device failures. Elements in group B have a smaller effect on safety. For

this reason bus option versions were not created for several group B safety

models. The table shows that both refined option configurations meet the

system safety requirement. Failure situations involving rare mechanical

actuator Jams and loss of both hydraulic systems are the largest

contributors to unreliability. These results differ from those of the

candidate architecture because of the absence of the special surface

control failure sequences and a large reduction in the likelihood of body

motion sensor temporary exhaustion. This was expected since the system

changes were directed at precisely those problems. Details of these results

are discussed in reference 9. Highlights are presented below.
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Table 4.4.2-1. Safety Model Results (x 10.7), 3-hr Flight

Sequence

Exhaustion

• Forward sensors
• Mid sensors
,FTP

• Surface jam
• Hydraulic supply
• Air sensors

• Engine-out throttle
• Both engines
• Surface pair safe

Neady coincident

• Like sensor
,FTP
• Sensor network
• Dual network

Temporary exhaustion

• Forward sensors
• Mid sensors
• Surface controllers
• Air sensom

Single network

Two network

0.00034
0.00040
0.034
0.24

0.18
0.0012
0.0072
0.0016
0.00014

' 0.00027
0.000144
0.0058
0.0034

0,00083
0.00012
0.013
0.0012

0.0112

Total 0.501 •

Not calculated

Four bus

0.0032
0.029

0.034
0.24
0.18

0.00014

0.00027
0.000144
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The unreconfigurable bus introduces a new central dependency aspect to

the bus system. However, even though the unreliability of some functional

groups is worse in the bus option, the system requirement is still easily

satisfied. It should be noted that adding bus interfaces to the other FTP

channels would greatly reduce the likelihood of central bus failures.

The DIUs, or bus interface units (BIU), connect the devices to the

central bus. An active DIU failure mode was modeled for the bus option,

which causes the loss of all devices connected over that bus. To assess

the resulting hazard, a nominal value of 10% active DIU failures was

assumed in the models. A sensitivity study showed that the table 4.4.2-1

results were not significantly affected when the active fault percentage

was varied from I% to 50%.

The results of the full mission capability evaluation are presented in

table 4.4.2-2. Details are discussed in reference 9. Unlike the loss of

safety situation, the mission unreliability is dominated by the group B

elements. Comparison of the mesh network and bus options show that the

network does better in mission reliability terms, but both systems meet the

system requirements. A key assumption in this evaluation is that the

mission can be continued after one of the two hydraulic systems fails. If

loss of a single hydraulic system is a mlssion-abort condition, hydraulic

supply failures would dominate the mission criterion.

The predominant mission failures were special slngle-failure situations

involving the propulsion actuators. Specific causes were control valve

jams and uncovered position sensor and valve drive failures. These

failures prevent device control and result in the loss of full performance

capability for its propulsion system.

Table 4.4.2-3 summarizes the results of the sustained operational

capability evaluation for the refined configuration options. Details are

presented in reference 9. The network option also has the advantage in

this comparison. The dominant failure sequence, given the assumed

operational rules, is loss of a single hydraulic system. This single

failure situation masks somewhat the effects of other system failure

sequences.
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Table 4.4.2-2. Mission Model Results (:<10.4), 1-hr Flight

Sequence Two network Four bus

Forward sensing
Mid actuation
Tail actuation

Wing actuation/sensing
Air sensing
Inlet actuation
Nozzle actuation

Engine devices
Electric power supply

Hydraulic power supply
Single network
Central bus failure*

0.00022
0.0009
0.0015
0.0076
0.00016
0.099
0.099

0.205
0.00015
0.00002

0,0015
u

0.0OO59
0.0038
0.0027
0.014
0.00038
0.100
0.100

0.212

0.00002

0.0061

Total 0.415 0.440

* Includes electric power and FTP channel
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Table 4.4.2-3. Sustained Capability Results (x10"2), 50 hr

Sequence Two network Four bus

Forwan:l sensing
FTP

Mid sensing/actuation
Wing sensing/actuation
Tail actuation
Air sensors
Inlet actuation
Nozzle actuation

Engine devices
Hydraulic power supply
Single network
Central bus failure

(A only)

0.019
0.184
0.022
0.190
0.037
0.033
0.102
0.102
0.304
0.450
0.015

0.053
0.184
0.108
0.350
0.066

NC
NC
NC
NC

0.450

0.024

Total 1.46 NC
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The ground rules for dispatch in this sustained capability model make

the safety-critical sensors and FTP channels play a direct role. Unlike

the mission model, failure of either two FTP channels or two safety-

critical sensors is a system failure condition.

Sensitivity Study. A limited study was performed to assess the

sensitivity of the reliability evaluation results to the model parameters.

The dominant failure sequences in the safety models and the mission models

were examined to see how model parameters such as component failure rates,

active failure fractions, uncovered failure fractions, and so on entered

into the system unreliability. The limited assessment made use of the fact

that the group A elements dominate the safety unreliability and the group B

elements are most important to mission capability.

Two critical parameters for safety were the fraction of surface

actuation failures leading to a jammed surface and the failure rate of the

hydraulic power system. An analysis of the most likely mission failure

sequences also pointed out two propulsion system critical parameters. The

first parameter was the fraction of propulsion actuator control valve

failures leading to a jammed valve. The second critical mission parameter

was coverage of the actuator elements. Details of this sensitivity

assessment are described in reference 9.

Transient Threat. The baseline reliability evaluation deals only with

the effects of permanent faults. Another concern for highly reliable

systems is the effect of transient failures. A limited, parametric

evaluation of the transient threat was performed during the refined

configuration study. This kind of transient study can evaluate the

effectiveness of the redundancy management processes, including the effect

of certain internal process parameters. Details of the study are presented

in reference 9. Some highlights are shown below.

The evaluation used the transient fault-FDIR interaction model shown in

figure 4.4.2-2. The transient event modeled in this study causes an error

that does not disappear by itself, b transient event that changes a memory

value corresponding to a program constant would cause this kind of

behavior.
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Three possible results of a transient event were modeled. The

transition marked "scrub" indicates return-to-normal operation, which

occurs if the periodic background FDIR process corrects the error before

its use in the system computation. There are two possible outcomes if the

error is used by the computation before this "memory scrub." One

transition models the case in which the affected channel produces an output

that disagrees with the other channels, and the other transition models a

loss of synchronization by the affected channel.

Loss of synchronization is critical for the IAPSA system because of the

intensely time-critical workload. Because a major fraction of the IAPSA II

minor frame is required for channel resync, it was assumed to be impossible

in the available time. Loss of channel synchronization thus has the same

short-term effect as a permanent channel fault.

The sensitivity to the rate of transient faults is shown in

figure 4.4.2-3. The figure shows that transients having the characteristics

of our model can become the dominating failure sequence if their rate of

occurrence is high.

The effectiveness of the modeled memory scrub process is shown in

figure 4.4.2-4. This process corrects the faulty data before it is used in

the system computation. The results imply that the process is not very

effective until its cycle rate approaches the cycle rate of the using

process.

Based on the nominal conditions assumed for the study, figure 4.4.2-5

shows that the increased likelihood of nearly coincident failures does not

significantly affect overall unreliability until recovery times exceed

about I sec.

4.4.3 TimlnE Prediction

A simplified performance estimate was also made for the refined

configuration. This estimate allows a rough evaluation of the success of

the changes made to the candidate architecture to improve growth

capability. Details of the prediction are presented in reference 9.

The candidate system organization ground rules were also used for the

refined configuration. Key timing data for this configuration are shown in
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table 4.4.3-1. Changes compared to the candidate architecture are due to

(1) fewer DIUs, (2) the reallocation of computing and I/O activity between

groups, (3) minor modifications of the assumed command and response frame

formats, and (4) the DIU time required for sensor and actuator interface

functions. The results of these changes are shown in table 4.4.3-2.

Comparison of these results with the candidate architecture shows that

the changes were successful. For comparison, the candidate growth factor

values were 59% for computing and 76% for I/O activity. It should be noted

that these timing results are based on the same simplifying assumptions

used in the candidate system estimate. Key assumptions are (I) no chain

completion delay, (2) slower rate processes can be evenly split into

independent separate processes, and (3) growth capability measures how much

the activity can expand uniformly before timing constraints are violated.

The DENET simulation experience showed that when the task switching

overhead was modeled the growth capability decreased significantly. The

timing estimates were therefore adjusted in a simple way for the overhead

resulting if the system utilization was increased to near 100%. The

results shown in parentheses in table 4.4.3-2 are obtained when a fixed

time of 0.3 ms is allowed for this task switching.

The refined system does not meet the growth requirement when the

overhead time is accounted for. Also, the current AIPS hardware and

software testing results show that the fixed 0.3 ms value is far too

optimistic. This indicates that the system design requires further changes

to meet the growth requirement.
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Table 4.4.3-1. Refined Configuration Timing Data

Group

A

B

Rate, Hz

100.0
50.0
12.5

100.0

50.0
25.0

Number of
transactions

6
6

4
2
4

Computing time,!

990
4,793 1

267

1,050
94

9,687 2

Organization ground rules same as reference configuration

1
Manual control fully active

2 Trajectory following active

Tab/e 4.4.3-2. Growth Factor Estimate

Group Computing I/O activity

A

B

133% (89)

127% (80)

111% (68)

140% (76)

Notes:

• Simplifying assumptions same as reference configuration
• Value in parentheses includes allowance for task switching,

0.3 ms
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5.0 stqALL-SCALE SYSTEM

A subset of the architecture defined in section 3.0 was developed to

evaluate the key attributes of the IAPSA II architecture while minimizing

the cost associated with this laboratory testing. This subset, called the

small-scale system, was carefully chosen to embody key features of the

IAPSA II architecture. This section outlines the objectives and

definitions of the experiments performed on the small-scale system and

concludes with the results of the testing.

The small-scale system effort was feasible because of the availability

of AIPS hardware and software fault-tolerant building blocks: FTPs, network

nodes, interconnecting links, and System Services software. The small-

scale system consists of a triple-channel FTP interfacing with two local

I/O networks. A goal of this effort was to ensure that validation issues

defined in the "Design/Validation Concept Report" and uncovered during the

detailed design effort were evaluated to the maximum extent possible. In

particular, experimental data were obtained for two purposes: (I) to

evaluate key performance assumptions used during the detailed design

effort, and (2) to determine if the system possesses timing characteristics

critical to successful operation in normal and faulted situations. The

small-scale system configuration could not test communication between the

flight control group and the engine group.

The section is organized into six parts: (I) a discussion of the

small-scale system testing objectives, (2) a description of the test

configuration, (3) the test control strategy definition, (4) a description

of the data collection and analysis strategy, (5) the experiment

description and results of the testing effort, and (6) observations and

lessons learned during the small-scale system testing.

5.I TESTINC OBJECTIVES

The general objectives of the small-scale system experiments vere to

characterize application performance under normal and faulted conditions

and to examine the interaction of system repair actions with application

task execution. The resulting measurements and observations, together with

139



timing values for low-level system functions provided by the building block

developer, C. $. Draper Lab, allowed evaluation of the performance

capability of the IAPSA II reference configuration.

Simulated workload and frame rates were used to represent the IlO and

computational requirements of the IAPSA II flight control configuration.

This approach required only a representative test input-output environment;

the test facility did not need to provide a high-fidelity aircraft

simulation for the experiments. This greatly reduced test facility

software development/support requirements while allowing the evaluation of

key system characteristics.

The experimental objectives were divided into two major categories:

(I) characterization of system behavior under normal operating conditions,

and (2) characterization of operation under fault conditions. Detailed

objectives of the experiments are presented in the following subsections.

5.1.1 System Characterization: Normal Conditions

The timing characteristics of the small-scale system were measured

while executing the application workload that corresponded to the flight

control configuration of the IAPSA II reference configuration.

Experimental measurements were taken to characterize the performance of

specific system service operations, and to assess end-to-end application

timing requirements. The first set of tests characterized the application

execution environment, specifically the I/0 request timing, control cycle

overhead timing and laboratory environment errors.

I/O Request Ti_InE. The time needed to execute the application I/0

activity is a key component of a control cycle. Estimates used for the

performance model were optimistic because they were based on operation at

or near the hardware theoretical limit. Small-scale system measurements

provided a more realistic end-to-end time for this activity. These I/0

request measurements included the system overhead time required to transfer

output data in preparation for an I/0 request and to transfer input data

obtained as a result of an I/0 request. The amount of data transferred

corresponded to the flight control reference configuration I/0 traffic.
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Control Cycle Overhead. The total end-to-end system processing time

needed to support cyclic application task execution was measured using a

controlled execution environment to determine allowable frame rates for

slow time testing. The key services operations that contribute to end-to-

end time are processing of IlO requests, task scheduling and dispatch

actions, and fast FDIR processing. The If0 request timing components

discussed previously are included in these measurements. Measurements were

made for two cases: (I) when the application task did no detailed error

checking, and (2) when the application task checked the error status of

every transaction.

Laboratory Environment Errors. Random errors occurring during

operation of the small-scale system will interfere with testing results. A

series of experimental runs were made to characterize the laboratory

environment. The critical issue of naturally occurring errors or

transients in the flight environment can only be addressed by actual flight

testing.

The second set of tests measured the performance of the application

workload executing on the small-scale system with no faults. The three

measurements made were execution variability, time delay, and deadline

margin.

Execution Variability. Execution variability measurements were taken

to characterize the frame-to-frame regularity of computing and I/O activity

events. These measurements allowed evaluation of the regular timing

performance of system scheduling and dispatch functions and I/O system

services processes.

Time Delay. The end-to-end time delay was measured to characterize the

overall timing performance of the application. The performance of each

major application function was affected by the overall time delay involved

in one control cycle. Times representative of the sensor read and actuator

write events (at the DIU) were recorded for each of the different

application rate groups.

Deadline Margin. Deadline margin data were collected to indicate how

well the system kept up with the periodic demands of the different

application rate groups. The deadline was the latest time that the
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activity in one control cycle can complete and still satisfy the control

cycle timin E requirement. The time from the end-of-control-cycle activity

in one frame to the start-of-control-cycle activity in the next frame

markin E the deadline was measured.

5.1.2 Syste_ TildnE Characterization: Fault Conditions

The measurement of system performance under fault conditions was a key

part of small-scale system testing. Both I/0 network and FTP faults were

simulated to evaluate the system failure response and to ensure that the

application performance durinE recovery was satisfactory. The key elements

involved in fault insertion were the I/0 network link fault insertion

panel, the VME operational test program, and the FTP operational test

proEram.

I/O Network Faults. Faults were inserted in the I/0 network to measure

the fault recovery time. The recovery was considered complete when the

network was back in service. Rapid recovery is important because while a

network is out of service the system is vulnerable to faults in devices on

the remaininE Eood network. In addition to the passive link failures

modeled durin E the performance simulation effort, active link failures and

active and passive node failures were investiEated.

FTP Faults. FTP fault behavior was simulated in the FTP to assess the

fault recovery behavior. Special failure simulation code was used to cause

the fault reaction from the AIPS FDIR process. Loss of synchronization

faults, output disaEreement faults, and loss of channel power faults were

inserted.

Rapid reconfiEuration from FTP faults is important for two reasons.

First, an FTP is vulnerable to a nearly coincident fault on another channel

durinE an FTP channel fault recovery period; a second channel fault before

the first is reconfiEured may cause a system failure that otherwise would

have been survivable.

Second, certain patholoEical channel failures can cause erroneous data

to be sent over a network. A faulty channel may cause all actuators to

"freeze" near their last commanded position. It is important for FDIR to

disable the faulty channel's outputs as soon as possible. Measurements
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were therefore made to determine how long it takes the system to disable

faulty channel outputs. Results were used to determine if a bad channel is

disabled and if comunication responsibility is transferred to a good

channel within a "few" application cycles.

Application Tiling Requlrenents. In addition to the fault recovery

time, the application timing measurements described earlier were taken

during the fault experiments to see if the additional demands made on the

system due to fault recovery adversely affected application execution.

Additionally, the number of control cycles in which the application tasks

operated without access to the full complement of sensors and actuators

were recorded. Each application frame without full data because of repair

actions was marked.

Transaction Selection. The time required to complete transaction

deselection and selection was measured. As a means of minimizing the

vulnerability of the IAPSA II refined system configuration to the temporary

exhaustion failure situation (see sec. 4), an application task must

determine the presence of an error in a chain, then deselect and select

alternative transactions. For this to be a viable option, the task must be

completed in a reasonable amount of time.

5.2 EXPEEIMENTTEST CONFIGt_ATION

The test configuration for the small-scale system experiments is shown

in figure 5.2-1. The hardware and software elements of the test

configuration are organized into two categories, the system-under-test

(SUT) and the test facility. The system-under-test elements represent

components that would ultimately be part of the flight system. The test

facility elements are the hardware and software that enabled the $UT

operation to be simulated in the laboratory and provided the development

and analysis capabilities necessary to support testing. An overview of

these elements is provided in the following sections. Details are found in

references 9 and 15.
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5.2.1 System-_der-Test Elements

Fault-Tolerant Processor. The FTP is an AIPS triplex GPC. Each

channel of the FTP used in the small-scale system uses two Motorola 68010

microprocessors running at 8 MHz, one used as an IOP, the other as a CP.

The CP is primarily used for application software execution while the IOP

is used for control of communications over the I/0 networks. The CP and

I0P communicate using a shared bus and memory. Special data exchange

interface hardware is used to transfer data between the separate channels

of the triplex FTP while precluding Byzantine faults. Operation of the FTP

during experiment activities was controlled through the FTP test port,

which was interfaced with the uVAX Experiment Host.

FTP Operational Test Pro&ram (FTPOTP). The FTPOTP consisted of two

major elements, the pseudo-appllcation software and the AIPS software. The

pseudo-applicatlon software had the responsibility for providing

computational and I/O activity workload simulation, collecting data in the

FTP execution environment, and implementing the FTP test control functions

during experiment runs. The AIPS services building block elements are

linked with the pseudo-application elements to form the loadable FTPOTP.

KIPS I/O Network. Two AIPS serial I/O networks were used to provide

communications between the FTP and the simulated sensor and actuator

interfaces (device interface units or DIUs). The networks were composed of

prototype reconfiEurable nodes and datalinks, which support full duplex

HDLC protocol communications. The FTPs were configured to model the flight

control group of the IAPSA II reference eonflguratlon. Network I was fully

configured with all nodes and simulated DIUs used in the reference flight

control confiEuratlon. All I/O network faults were simulated on Network 1.

Network 2 was simulated vlth two nodes interfacing with a full complement

of DIU simulators. During operation it behaved llke a fully configured

network supporting a full I/O traffic load.

5.2.2 Test Facility Elements

The test facility was required to (1) provide an environment that would

support the particular test conditions in the system-under-test elements,
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(2) provide a representative input-output environment to the small-scale

system during experimental runs, and (3) support collection of experimental

data during execution. In addition to these runtlme activities, the test

facility was also required to support downloading of software into the

system-under-test, checkout of the experimental setup, and analysis of the

experimental data.

Simulation Host. The simulation host is a virtual memory extension

(VME) bus based system containing a 16.7 MHz 68020 CPU, referred to as the

VME simulation computer, 16 MB of random access memory (RAM) for data

storage, several intelligent VMEbus serial I/O boards modified with custom

I/O network interface boards for use as DIU simulators, a parallel I/O

interface board for communications, and a fault insertion panel. During

experiment runs, the simulation host is responsible for (I) maintaining an

experiment time reference, (2) providing real-time DIU simulation

capability, (3) controlling I/O network fault injection hardware, and (4)

data collection from I/O network activity.

VME Operational Test ProEran (VMEOTP). A VMEOTP running on the VME

simulation computer handles the test setup, initialization, test control,

and runtime data collection functions for the simulation host. The VMEOTP

fault control function commands the state of the I/O network fault

insertion panel during experiment runs in accordance with a predefined

fault script. This capability allows a wide range of network faults to be

simulated. In cooperation with the DIU simulators, it manages the

temporary storage of I/O network activity data collected during experiment

runs. Finally, in its test control function role, it coordinates the start

and orderly termination of an experiment run with the FTP and other

simulation host elements.

DIU SimLlator Operational Test ProEran (DilIOTP). In an actual system,

DIUs connected to the I/O network provide an interface between application

software executing in an FTP and aircraft sensors and actuators. The

small-scale system uses DIU simulators to support the I/O network

transaction load representative of an actual system. The transactions

contain dummy data that are used for test purposes and do not have values

representative of actual sensors or actuators. The DIUOTP is responsible
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for initializing the DIU simulator hardware, checking the command frames

received, collecting command frame data, generating any necessary response

frames, and starting and stopping DIU operation during experiments.

uVAX Experiment Host. The uVAX Experiment Host computer controlled

both the VMEbus simulation computer and the FTP. The VHEbus simulation

computer is controlled using the VME Ultimate User Environment (VULTURE)

program; the FTP is controlled using the uVAX Resident FTP Interface

Program (VRIP) and the FTP resident AIPSDEBUG program. During experiment

operations the Experiment Host is responsible for (I) downloading FTP

operational test programs before experiment runs; (2) downloading VME and

DIU operation test programs before experiment runs; (3) setup of the run-

peculiar data configuration in the FTP before experiment runs;

(4) initiation of an experiment run.

The Experiment Host is also responsible for uploading and temporary

storage of the raw data collected in the VMEbus simulation host and the FTP

after experiment run termination. It is capable of converting the raw

experiment data from the VME simulalion host and the FTP to a common data

analysis format. It also supports data analysis and archiving of processed

experiment data.

VAXstatlon Development Host. The VAXstation 2000 is primarily used to

develop the software and firmware targeted for the VME Simulation Host

elements including the VMEOTP and the DIUOTPs. The software elements are

transferred to the Experiment Host for downloading into the simulation

computer.

The VAXstatlon Development Host is also used to develop, compile, and

llnk the FTP operational test program. The host contained the AIPS

services software library, b'hen the pseudo-application software is ready,

this machine compiled and linked the loadable FTP operational test program.

The loadable programs are then transferred to the Experiment Host for

downloading to the FTP.

Laboratory Communication Links (Non-runtime). An Ethernet link

provides a connection betveen the uVAX Experiment Host and the VAXstatlon

Development Host. The link is used to transfer developed VME, DIU, and FTP

operational test programs during software development.
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A custom link connects the FTP test port and the test port controller

in the uVAX Experiment Host. This link is used to dovnload the FTP

operational test program before experiment runs, to start the operational

test program in the FTP, and to upload ray experiment data after experiment

runs.

A custom parallel interface connects the Experiment Host and Simulation

Host. It is used to douload programs to the Simulation Host and to upload

ray data after experiment runs.

Test Control Links. Three discrete links connect the FTP and the

Simulation Host. Tvo links are used to coordinate the tvo main simulation

elements at the start of the experiment run. The links also alloy the time

references in the Simulation Host to be synchronized at the start of the

experiment in the FrP. A fault-tolerant clock link is used to ensure the

use of a comon-time reference in the _P and the Simulation Host elements.

I/O Netvork Fault Insertion Panel. Patch cables to the I/0 netvork

fault insertion panel provide the capability of inserting stuck logic 0 or

stuck logic i signals into an I/0 network link. The Simulation Host

controls the introduction of I/0 netvork faults through the I/0 netvork

fault insertion panel. The _EOTP commands the fault insertion panel to

initiate and terminate fault behavior.

Kxperiment Dependent Omfi_arations. The configuration of the elements

used in the experiment test series vas standard vlth the exception of the

operational test programs in the _rP and the VMEbus simulation computer.

These programs vere different from experiment to experiment because of the

different fault simulation, data collection, and simulated computing

wor_oad requirements. The hardware configuration for the experiments

differed only in the netvork connections required to support fault

insertion.

5.3 TKSTCONTROL STRATEGY

A command file on the Experiment Host containing detailed experiment

setup requirements was executed to run the small-scale system experiments.

These command procedures control the actual execution of the experiments at

the test facility, including program loading, special condition

initialization, experiment start synchronization, and data collection.
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Each experiment run is coordinated through two test control discretes

that synchronize the operational test programs in the FTP and the

Simulation Host. I/hile either machine is set up for a run, the two sync

discretes are set to the STOP state. Vhen the Simulation Host is ready for

an experiment and the runtlme software is started, the VME sync discrete is

set to the RUN state. The Simulation Host then waits for the FTP test

control discrete to change to the RUN state.

When preparations for an experiment run were completed, the FTPOTP was

started via the VAX Resident Interface Program (VRIP). On completion of

FTP initialization, the FTP samples the VME sync discrete. Vhen the VME

sync discrete is in the RUN state, the test control function in the FTPOTP

schedules the start of application tasks and its synchronization task.

After a" fixed delay, the synchronization task is activated to change the

FTP discrete to the RUN state. Approximately 1 sec after signalling RUN,

the application tasks begins cyclic operation.

The Simulation Host time reference measures time from when the FTP sync

discrete changes to the RUN state. On completion of an experiment run, the

FTP sync discrete is set to STOP. The Simulation Host responds by

terminating data collection and recording the experiment run completion

time. When data are stored in the VME system, the VME sync discrete is set

to STOP. Both computers are then free to transfer experiment raw data

and/or set up for the next experiment.

The real-tlme clock in the FTP, the VME simulation computer time-

reference clock, and the VME DIU simulator time-reference clocks are

synchronized at the start of an experiment by the transition of the FTP

sync llne. The FTP fault-tolerant clock, which operates with a 4.125 _s

period, drives all the timekeeping functions in the system.

5.4 DATA COM.ECTIONAI_ANALTSIS

The DIU simulator collects I/0 network transaction data in real time.

The raw data contain the DIU address, HDLC frame identifier, and the

application task frame count sent by the FTP plus the time of receipt of

the transaction, number of bytes received, number of residual bits, and

frame error status information.
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Data regarding FTP operation are collected during experiment runs by

the pseudo-appllcation program and stored in CP local memory. After run

completion, data are extracted from the FTP using the VRIP software

interface and stored as raw data files on the uVAX Experiment Host. Data

collected by the pseudo-appllcation included the real-time clock value at

significant application events, indicators for certain I/O system and FTP

errors, and the background program workload count at the beginning of each

minor frame.

Some data, needed to complete experiment documentation, are available

in the system services logs, which can be accessed by a CRT connected to

the CP or IOP. These logs are printed out using a CRT screen-dump printer

at the completion of each run.

The raw data generated after each experiment run are available for

analysis on the uVAX Experiment Host. The raw data are converted to a

common format before use by the Data Analysis Program. FTP data recorded

on experiment log printouts are entered manually for use by the data

analysis program.

5.4.1 Standard Statistical Data

The data analysis program performs a standard analysis of many

experimental data sets including mean, standard deviation, and extreme

values. The package also generates histogram displays of certain dataset

values whose range and number of intervals are based on their extreme

values and the number of samples. Histogram limits can also be manually

set by the data analyst.

Execution Variability Data. Statistics in this category indicate the

frame-to-frame variability of an application event based on its time of

occurrence relative to the ideal frame start time for each application

frame (frame relative time). The ideal frame start time is based on the

ideal start time of the very first frame and the frame repetition period.

Duration Data. Statistics in this category are based on the difference

in the time of occurrence of two application events in raw application

event database. Two examples are deadline margin and time delay, which

were described earlier.
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5.4.2 Event S,,=,,-ry Data

Summary information about certain special situations occurring during

the run(s) being evaluated is presented by the analysis program. The

summary data is organized in chronological order of event occurrence. When

an event is listed, associated data recorded with the event are presented.

The event summary for each run includes a run start entry and a run

termination entry. An entry for the FTP fault insertion event and the VME

fault insertion event is included as appropriate.

There are also entries for each application frame that experienced

communication errors during ZI0 activity. These errors include "chain

error," "all transactions bad," "chain not complete," "chain did not

execute," or "network out of service." Any command frame received at a DIU

with errors appears in the summary. The command frame identifier, time,

frame count, and error code are presented.

The partial data summary shows the number of frames in which

communications with the complete set of DIUs was interrupted because a

network was out of service. The summary shows the number of frames in each

run in which each application rate group used a partial set of

sensor/actuator data because a network was taken out of service.

The abnormal DIU data summary indicates when a DIU did not receive the

expected periodic update from the application task. This occurs when a DIU

command frame is repeated or skipped.

The abnormal frame entries document the occurrence of an incorrect

application cycle. The three specific situations are missed I/0 update,

computing overrun, or 10R overrun.

5.5 EXPERIMENTAL RESlP.,TS

This section presents the results of the small-scale system testing.

The small-scale system experiment numbering convention begins with

experiment i0 to avoid confusion with the performance model experiments.

As discussed in section 3.0, the AIPS system supports two application

IlO organizations, periodic and on-demand. These two organizations are

illustrated in figure 5.5-I(a) and 5.5-1(b). Recall that the performance

model demonstrated that the on-demand I/0 organization could not meet the
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IAPSA II performance requirements. However, both I/O organizations were

evaluated in the small-scale system to investigate the concurrent

developments of AIPS and IAPSA II.

The structure of the on-demand I/O organization used in the small-scale

system differed from that of the performance model. These two

organizations are contrasted in figure 5.5-1(b) and 5.5-1(c). The

performance model was based on minimizing the jitter in the I/O request

execution by requesting the I/O execution at the start of the frame and

then suspending processing until the completion of the I/0 request. While

minimizing the I/O jitter, this organization incurs one additional system

overhead call per application cycle. The small-scale system organization

performs the application computing at the beginning of the frame and

concludes by requesting I/O. This organization is susceptible to I/0

jitter due to variations in the computing duration, but requires one fewer

system call per application cycle. A potential problem with this

organization is that the application has much less control over the

execution of the I/0 requests. Because I/O execution is nonpreemptable, a

lower rate I/O request can block a higher rate I/O request by starting a

long nonpreemptable segment immediately before the arrival of a higher rate

I/O request. This can potentially lead to missed I/O updates.

5.5.1 Experiment I0: _ Rxecution Environment Characterization

Experiment i0 was defined to measure how small-scale system testing

would effect the FTP execution environment. These measurements included

(I) the time required to read and store a real-time clock value, (2) the

time required for background self-test loop execution, (3) application

workload loop timing, and (4) idle loop timing. The special application

program was the sole process in the FTP (i.e., no FDIR and no background

self-test) and was configured with no I/0 activity.

Real-Time Clock Read. This special application program characterized

the overhead required to make timing measurements from within application

programs for data collection purposes. The process was executed 1,500

times.
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The data collected from this test indicates that reading the real-time

clock and storing the value is completed in less than 15 _s. In general,

reading the real-time clock for data collection purposes will not

significantly impact the execution of the application processes.

Background Self-Test Timing. The second test measured the time of

execution for one cycle of the background self-test process. Again, this

test was run as the only active task in the FTP.

This test was motivated by the transient fault reliability model

analysis completed during the detailed design phase. The analysis

indicated that the background self-test contributed significantly to

overall system reliability when its cycle time is comparable to the cycle

time of the application. That is, to be effective against transient faults

that cause a loss of synchronization, the background self-test must scrub

memory nearly as fast as it isused by the application. The results of the

test indicate that with exclusive use of the CP, the background self-test

.program takes 369 sec to execute 1 cycle when configured to test 64 KB of

RAM. This clearly indicates that the background self-test function is

inadequate for protection against transient faults that cause a loss of

synchronization.

Workload Loop Timing. This test was defined to determine the execution

time of a program used to simulate variable application computing workload.

On analyzing the data, the execution time of the workload loop as a

function of the number of loop iterations is described by the following

equation:

time(ms) := k * 0.0143055 + 0.041245

where k is the number of vorkload loop iterations.

Idle Loop Tining. This test was defined to develop a program to

measure idle time between any two points in time in the CP. Idle time is

the time not allocated to application processing or FDIR. The program is

based on a simple loop and a counter variable. Analysis of the assembly

code for this program indicated an execution time of 18.82 _s per loop.
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5.5.2 Experiment 11: System Overhead Characterization

Smmary. The poor performance of key system I/O functions used by

applications prevents the small-scale system meeting the IAPSA real-time

requirements. These included (1) read input/output request (IOR) data,

(2) write IOR data, (3) process IOR, and (4) error status acquisition.

Overvlev. To determine the execution time of system I/O functions, a

test program that sequenced the application rate group If0 activity was

developed. The first test measured the time requirements of I/O functions

used during normal operation. A second test measured time used by system

functions that provided the application with detailed If0 error status

information. A third test determined if nuisance faults produced by the

laboratory environment would disrupt the experimentation.

Application/System Interface Timing: Normal Operation. A timeline of

the key system functions used by the application on a frame-to-frame basis

is illustrated in figure 5.5.2-1. During each cycle, the application

process executes a "read IOR" function to transfer the results of an I/O

request from shared memory into local CP memory. A "write IOR" transfers

the data for an I/O request from local CP memory into the shared memory.

The "start IOR" function requests the execution of a particular IlO request

(data to and from the DIUs via shared memory). The "process IOR" time

shown in figure 5.5.2-1 includes the collection of functions that execute

in the IOP, the IOS, and the DIU to complete the requested activity. This

test measured the time to complete each of these functions for the

reference flight control configuration.

The execution time of the system functions in the small-scale system

was significantly longer than the execution times assumed for the

performance model. A comparison of the assumed execution times from the

performance model and the actual execution times measured in the small-

scale system the 100 Hz-rate is illustrated in table 5.5.2-1. Even with

the optimistic assumptions of the performance model, the reference

configuration was unable to satisfy the system performance requirements.

It is clear from this data that the assumptions made for the performance

model are not an accurate characterization of the small-scale system FTP.
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Table 5.5.2-1. System Function Execution Time Comparison _ lO0-Hz Rate

Model

Reference model

(assumed values)

SSS FTP

(actual values)

Read IOR.

% of frame

0.0

96.96

WrJte JOR.

% of frame

0.0

74.88

Start IOR,

% of frame

OO

4.47

Process IOR, % of frame

Load DPM

5.11

221.57

Chain timeout

interval

20.0

45.0

Unload DPM

13.57

208.11
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As illustrated in table 5.5.2-2, the execution of key system functions

during normal operation precludes the small-scale system from maintaining

the cyclical rates required by the IAPSA reference configuration.

Technology insertion (processor and memory upgrades that affect processor

speed) alone will not realize the performance improvements necessary to

match even the performance model. The hardware design of AIPS, which

provides inherent AIPS characteristics such as byzantine fault resilience,

minimum overhead voting, and rigid fault containment regions, places a

limitation on performance improvements possible with technology insertion.

For example, one limitation stems from the interrelationship between the

fault-tolerant clock and data exchange element.

Application/Systea Interface TiminE - I/O Error Processing. This test

measured the time to execute system functions related to error checking

with respect to application I/O activity. The test was configured to

measure the worse case situation when nearly all transactions experience

errors.

The results of the test, that is the time needed for the application

process to acquire the I/0 error status for each transaction, is

illustrated in table 5.5.2-3. These values indicate that the incremental

time to acquire the transaction error status is unacceptable for the 100-Hz

and 50-Hz rates. The error status functions must be efficient since they

allow the application to take appropriate action when there is an error

status indication.

Laboratory Environment Noise. The final test determined if excessive

noise was present in the I/O system, which would interfere with the normal

operation of the small-scale system. System logs were studied to ensure

that errors were not reported by the FDIR or the I/0 network manager. No

erroneous or missing I/O frames were detected and no FDIR actions

indicative of data exchange errors were observed.

However, some problems were experienced during the initialization of

the system. Two types of errors occurred: errors that resulted in a

configuration other than that required to complete the experiment run, and

errors that did not affect system configuration (e.g., an error encountered

in testing the spare root link). Experiment runs that experienced errors
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Rate

100 Hz
mean of 412

samples

50 Hz
mean of 206

samples

mean of 103
samples

Bytes %offrame

212 96.96

204 55.09

28 8.42

Table 5.5.2-2. System Function Execution Time - Normal Operation

Read IOR Write IOR Start IOR,

% of frame Transactions/

Bytes % of frame network

96 ,74.88 4.47 8

124 45.72 2.25 10

12 16.27 1.12 2

End start IORto IOR completion flag set

Chain timeout values: 100 Hz, 45 %
50 Hz, 26.5%

25 Hz. 2.3%

ProcesslOR=-'_""_

% offrame

490.68

272.11

65.20

I/0 cycle
total,

% of frame

666 99

375.17

81.01
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Table 5.5.2-3. Time to Execute System Functions for Error Processing- Small-Scale System

Activity 100-Hz, % of frame 50-Hz, % of frame 25-Hz, % of frame

Error processing 59.98 36.48 5.92
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affecting system configuration were rerun. No errors, other than those

intentionally inserted, were observed after the system had been initialized

to its test configuration.

Application Workload Scaling. The performance model analysis concluded

that the reference configuration could not meet the IAPSA II performance

requirements (i.e., growth margin and on-demand I/O). This conclusion was

based in part on the FTP being a 3-Mips processor and some optimistic

assumptions for system function execution time. Data from this experiment

indicate that a 3-Mips FTP would not improve the execution time of the

system functions sufficiently to match the performance model.

To complete the small-scale system experiments, the IAPSA real-time

workload was scaled to slower than real time. This shifted the focus of

the experiments to interactions between the application and the system

elements. The scaling strategy was to set the frame rate to approximate

the percent system loading of the performance model. The cyclic frame

rates were scaled to 14.5 times slower than real-tlme based on the I/O

activity data. This produced an I/0 system utilization comparable to the

performance model input. The 100-Hz frame period was scaled to 145 ms, the

50-Hz frame period was scaled to 290 ms, and the 25-Hz frame period was

scaled to 580 ms. The workload loop function was adjusted so that the end-

to-end time of the processing workloads in the CP (read IOR, simulated

computing, write IOR, and start IOR) for the I00 Hz, 50 Hz, and 25 Hz were

30.7 ms, 54.1 ms, and 130.3 ms.

Unfortunately, the components of the scaled small-scale system loading

do not have the same relative magnitudes as those components in the

performance model for several reasons. First, the I/O activity values that

were used in the performance model did not include system overhead values,

vhlch were included in the small-scale system workload. Second, the speed

of the critical hardware yam not changed (e.g., data exchange and IlO

network transmission rate). Thirdly, the execution speed of the small-

scale system functions was not altered. Finally, experience with the

performance model indicated that a small difference in system loading could

cause it to overload when it was operating near capacity. To avoid this

problem during testing, the small-scale system workload scaling (14.5) yam

adjusted to produce a less heavily loaded system.
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5.5.3 Experiment 12: CP/IOP FDIR Phasing Investigation

Sulnary. During the investigation of the CP/IOP FDIR phasings, it was

discovered that the current implementation of the periodic I/0 is

unsuitable for use in cyclic control applications. Application rates

specified as exact integer multiples do not execute at integer multiples.

The small-scale system application is not as sensitive to

application/FDIR phasing as the performance model predicted. This is

attributed to the difference in relative time requirements for application

computing and FDIR modeled in the performance simulation compared to what

was run in the small-scale system.

Overview. A limited set of CP _nd I0P FDIR phasing combinations were

tested to assess their effect on key application tining parameters. Six

specific FDIR phasing combinations were chosen. For all tests in this

experiment, the starting time of the application activity with respect to

the major frame was the sane. FDIR execution times were selected based on

performance model experiment results. The specific phasing combination is

identified by the frame relative time that the FDIR in each processor is

scheduled to start. For example, CPI40, IOP20 means that the FDIR in the

CP is scheduled to begin 140 Ms after minor frame start and the IOP FDIR is

scheduled 20 Ms after frame start. The selected combinations included

cases in which one or both FDIR processes preempted application computing

or I/O activity, and cases in which both were scheduled during idle

periods.

A figure of merit, deadline margin (sec. 5.3.1), was used to evaluate

FDIR/application phasing in the performance model. To measure deadline

margin in the small-scale system intrusive instrumentation would be

required of the AIPS services softvare. To avoid this, yet obtain the

necessary data, an event closely related to the actual deadline or final

activity vas used. This introduced a bias in the processed deadline margin

values. The deadline margin for the on-demand I/O organization is the time

between the completion of the application data being transferred from the

DPM to the shared memory and the beginning of the next computing cycle in

the CP. To mark the end of the transfer of application data from the dual

port memory (DPM) to the shared memory, the final DIU transaction in a
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chain was used. The deadline margin for the periodic I/O organization is

the time between the completion of computing in the CP and the input/output

systems services (IOSS) starting the execution of the I/0 request for the

next frame. No event was available to mark the beginning of execution for

an I/O request, consequently, the ideal frame start time was used.

The deadline margin data is used in this report only to compare

experiment runs.

On-Demand I/O. A summary of the application data for the on-demand I/O

scheduling is illustrated in table 5.5.3-I. These data indicate that the

change in minimum deadline margin and idle time as the FDIR/application

phasing varies is small. The data do not indicate a compelling need to

coordinate the FDIR execution with the application activity.

This conclusion is different than the analysis of the performance model

for the flight control system. The analysis indicated that the FDIR must

be coordinated with the application activity, or computing deadlines could

be missed. The minimum deadline margins observed in the performance model

experiments varied widely as the FDIR/application phasings changed. For

example the minimum deadline margin ranged from 5.1% to 33.7% of the frame

for the lO0-Hz task; missed deadlines to 39.2% of the frame for the 50-Hz

task; and 24.7% to 38.8% of the frame for the 25-Hz task.

The deadline margin is not very sensitive to the FDIR scheduling in the

small-scale system. This is a result of the scaled application workload

and the unscaled FDIR. In the performance model, the FDIR required 20% of

a lO0-Hz frame; in the small-scale system FTP, the FDIR required only 1.5%

of the scaled lO0-Hz frame and therefore had an insignificant impact on the

application execution.

The utilization of the CP changed only a small amount as the scheduling

of the FDIR varied. This finding agrees with the performance model

experiments.

The application summary data do not indicate an obvious choice for a

preferred application/FDIR phasing. The FDIR phasing combination of CP 140

and IOP 20 was selected for use in the remainder of the testing. Some

additional application performance parameters for the selected phasing are
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Table 5.5.3-I. Experiment 12 On Demand I/0 Summary

FDIR
CP

140

000

000

110

140

140

Time
lOP

O2O

000

OSS

110

110

025

100-Hz m=n.
deadline

margin, %
scaled of

frame

50-Hz man.
deadline

margin, %
scaled of

frame

25-Hz mm.
deadline

margin, %
scaled of

frame

Mean idle
time

frame 1, %
scaled of

minor frame

33.6

Mean idle
time

frame 2, %
scaled of

minor frame

Mean idle
time

frame 3, %
scaled of

mtnor frame

Mean idle
time

frame 4, %
scaled of

minOr frame

60.1 70.3 53.0 0 17.4 70.9

60.0 70.3 51.9 34.5 0 19.1 71.8

55.0 694 52.7 34.5 0 19.2 71.9

60.3 67.8 51.9 33.9 0 18.0 71.2

60.1 67.8 51.9 33 6 0 17.1 70.9

60.1 70.2 53.0 33.6 0 17.1 70.8
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illustrated in figure 5.5.3-1. A timeline illustrating the application

activity is depicted in figure 5.5.3-2.

The application performance parameters are as expected with the

exception of the I/O Jitter for the 50-Hz rate. The data are evenly split

into two peaks, which are separated by roughly 2.5 ms. This even split

suggests some type of interaction with the 25-Hz rate. Comparison of the

50-Hz and 25-Hz activity in figure 5.5.3-2 provides an explanation. The

25-Hz computing completes near the end of minor frame 3 and makes its I/O

request to the I0$$. The I/O posting task for the 25-Hz rate interrupts

the IOP processing of the currently executing 50-Hz I/O request to

acknowledge the 25-Hz I/O request. This short interruption causes the

observed split in the data. By comparison, the execution of the 50-Hz I/O

request in minor frame 1 is not affected by other application activities.

The observed performance impact of processing a new I/O request,

arriving during the execution of an existing I/O request is a concern for

real-time applications. The nominal impact on the 50-Hz I/O in the third

minor frame was approximately 2.5 ms. Any application process could be

affected by the changing demands on the system during fault repair

situations or change in workload.

Periodic IlO. A major deficiency in the periodic I/O scheduling

implementation was encountered during this test. The scaled 50-Hz and

25-Hz application processes did not execute at their specified frequency.

This phenomena, known as phase drift, is unacceptable for a cyclic control

application. The numerical representation in the software program that

controls the cycle period is the cause of the phase drift. The system

software converts the representation of the desired frame period, to an

internal representation during system initialization. During this

conversion, frame periods originally specified as exact integer multiples

are converted to values that do not maintain the specified relationships.

This causes the execution sequence of the I/O requests to vary, which can

lead to missed I/O updates. The following example, observed during

testing, illustrates this problem. Because the 50-Hz cycle period is not

the exact integer multiple specified, the relationship between the lO0-Hz

and 50-Hz I/O request varies from frame to frame. Eventually, the 50-Hz

I/O begins execution before the 100-Hz I/O, blocking the higher rate IlO.
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Investigation of this phenomena in the small-scale system predicted

that the 50-Hz and 100-Hz I/0 would switch execution order after more than

400 50-Hz frames. However, in four out of the five FDIR/application

phasings, the 50-Hz I/O request and the 100-Hz I/0 request switched order

after 91 50-Hz frames. Additionally, the phase drift phenomena should

result in the switched I/O request execution order persisting for at least

50 frames. However, the switched order observed only persisted for one

frame; this behavior is inconsistent with that predicted for phase drift.

The early switch of the 50-Hz and 100-Hz I/O request for a single frame is

suspected to be due to an anomaly in the IOSS logic. This phenomenon was

not further investigated.

Because of the phase drift problem, the remainder of the testing was

performed using the on-demand I/O configuration.

The on-demand I/O configuration did not suffer from phase drift. An

application executive was developed, which was driven at the fastest

application rate and dispatched the application tasks to ensure the

intended execution order, requiring the local system service to maintain

only one periodic rate.

5.5.4 Experiment 13: I/ONetwork Faults

Summary. This experiment was designed to simulate failures affecting

the I/O mesh network. The implementation of the present AIPS I/O FDIR

strategy, which manages the loss of communication with DIUs, can

potentially result in the loss of safe flight. This strategy, called

transaction bypass, results in old I/O data being transmitted to the I/O

network in valid transactions. This situation will result in a force fight

between actuators causing the loss of the IAPSA vehicle.

Processing of application transactions, containing communication

errors, takes much longer than expected and significantly alters the frame

to frame execution of the application I/O activity. This extraordinary

time for error processing may result in the application missing either

computing deadlines or I/0 updates.

Overview. The inserted faults cause fault behavior representative of

two general classes of failure modes for network nodes and links: active
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and passive. A network link consists of two pairs of wires: the outboard

pair carries signals in a direction away from the FTP, and the inboard pair

carries signals toward the FTP. Two types of network faults were inserted:

a passive fault, which holds one pair of network links at logic 0 and an

active fault, which holds one pair of network links at logic 1.

Once the fault was inserted, the observed repair sequence for these

experiments, unless otherwise noted, is as follows: (1) the I/O network is

taken out of service for repair when an application I/O request encounters

communication errors, (2) the I/O FDIR is activated and a sequence of I/O

activity takes place on the out-of-service network, and (3) when repair is

complete, the network is returned to service and the application I/O

activity resumes on the repaired network. The failure detection time and

the time to return of a repaired I/O network to service could not be

acquired without intrusive instrumentation of the I/O FDIR logic that

executes in the IOP. Because of the difficulty in instrumenting FDIR

logic, the FTP log entries were used to approximate the time of failure

detection and the time to return the repaired I/O network to service.

Three repetitive runs were made for each failure mode for each failed

element.

I/O network i, as grown from root node FCI with no faults, is depicted

in figure 5.5.4-1. This is the Starting configuration of network 1 for all

the I/O network fault tests. The nodes are identified by the symbolic

names of the attached DIUs. The DIUs are not illustrated in this figure;

all nodes have one DIU attached to them with the exceptlon of FCI and FC3,

which have none. Each node is marked by icon(s) to indicate the

application rate group that communicates vlth the attached DIO. Network

links are classified by the elements they connect: FTP to network (root

link), network node to network node (Internode link), and network node to

DIU (DIU link).

An experiment run was configured by routing the network links to be

faulted through a fault insertion panel connected to the Simulation Host

computer. Onder software control, the simulation host computer activated

independently controlled fault channels in the fault insertion panel at the

end of the fifth major application frame (arbitrarily chosen). The faults

inserted for this experiment are illustrated in table 5.5.4-I.
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Key:
m Enabled link

Spare link
100 Hz

,1= 50 Hz
25 Hz

SRL Spare root link
O I/O network node

Figure 5.5.4-1. Network 1 as Grown From FC1, Small-Scale System
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Table 5.5.4-1. SSS I/0 Network Faults

Element Identifier Fault

Intermode links

Network nodes

Root links

DIU links

FCI-S2
SI-CP1
$2-CP2

S1 -OFL

FCt
S2
CP1
CP2
OFL

Channel A-FC1
Channel B-FC3

$2
CP1
CP2
OFL

Passive (inboard and outboard)
Active (inboard)
Active (outboard)

Passive (all ports, inboard and outboard)
Active (all ports, outboard)

Passive (inboard and outboard)
Active (inboard)

Active (outboard)

Passive (inboard)
Active (inboard)
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Internode Links.

Passive Inboard and Outboard. The affect of I/O link repair on the

application activity is illustrated in table 5.5.4-2. The link failure

between nodes FCI and $2 resulted in the only significant effect observed

in this test.

In determining the cause for the shift in processing, it was observed

that transaction error processing consumed excess IOP time. At the end of

each I/O activity, the IOSS processes the I/O data checking for errors in

transactions that have been detected by the IOS. The time required to

process transactions containing these errors is significantly longer than

transactions without errors. Consequently, the additional error processing

delays the execution of any waiting I/0 request(s).

The impact of the transaction error processing is illustrated in

figure 5.5.4-2 with a fault (FCI-S2) that results in error processing for

three transactions in a 100-Hz chain. The nominal process alignment is

shown with solid lines; the realigned processes are shown with broken

lines. The figure illustrates that the 100-Bz error processing delays the

processing of the 50-Bz IlO. Bowever, this delay is offset because the

processing requirement for the waiting 50-Hz I/O is reduced to

approximately half nominal operation as a result of network I being taken

out of service; application data is not loaded on networks which are out of

service for repair. The net effect for this scenario is that the beginning

of the 50-Hz network 2 activity is slightly delayed by the error processing

for the 100-Bz chain. The delay of the 50-Bz I/O activity reduces the

deadline margin for that frame.

The transaction error processing for faults discovered by the 50-Hz

rate do not have the same effect on the application because the error

processing expands into an idle period.

The fault repair times for this experiment are summarized in table

5.5.4-3 as a percent of the scaled lO0-Hz frame. Each of these link faults

is repaired with a fast repair algorithm.

As observed in the performance model, the fault repair times are

directly related to the application I/O activity that encounters the fault_

and the succeeding Idle time in the IOP necessary to execute the repair
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Table 5. 5.4-2. Experiment 13 -Passive Inboard and Outboard Internode Link Failure Summary

Link fa_led connects

Source Destination

FC1 $2

51 CP1

$2 CP2

$I OFL

IO0-Hz minimum deadline
margin, % change from

nominal

0.0

0.0

0.0

$0-Hz minimum deadline

margin, % change from
nominal

-1.5

0.0

0,0

0.0 0.0

25oHz mlmmum deadline

margin, % change from
nominal
i

0.0

0.0

0.0

0,0
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Table 5.5.4-3. Experiment 13 - Passive Inboard and Outboard Internode Link Fault Repair Times

Link failed connects

Source

FC1

Destination

S2

Run 1, % of scaled minor Run 2, % of scaled minor
frame

441

frame

441

Run 3, % of scaled m_nor
frame

441

$1 CP I 400 400 400

$2 CP2 400 400 400

S1 OFL 317 317 317

175



algorithms and execute the I/0 activity. The performance model assumed

that determination of the fault by the I/O FDIR and maintenance of the data

structures related to the I/O network would not vary significantly from

fault location to fault location. This does not appear to be the situation

in the small-scale system. The differences in fault repair times for the

two different fault locations detected by the 100-Hz rate (FC1-S2 and

S1-OFL) appears to be associated with maintenance of data structures

related to the I/O network.

Active Inboard. As with the passive failures, the only application

rate impacted by I/0 link failure is the 50-Hz rate (table 5.5.4-4).

However, the impact is much greater than in the passive failure and is

caused by the transaction error" processing. Because this fault is an

active inboard failure, all the transactions in the chain contain

communication errors. The resulting transaction error processing accounts

for an additional 80 ms of IOP processing. This scenario is depicted in

figure 5.5.4-3 by the 50-Hz I/O processing being delayed by I/O error

processing on the eight transactions of the 100-Hz chain for network 1.

The fault repair times are summarized in table 5.5.4-5; these times are

significantly longer than the passive failure. Larger repair times

associated with repairing the network is because of the fast regrow

algorithm used to repair this failure.

This result is different than the performance model. The full regrow

algorithm was the recognized strategy for repairing this fault when the

performance model was developed. Since that time, the repair strategy for

this fault has been optimized; the new strategy is called fast regrow.

Fast regrow is essentially the full regrow algorithm without the detailed

diagnostic test that tends to dominate the network growth time. Another

factor influencing the difference in repair times between the performance

model and the small-scale system is the demands the application processes

place on the system. The performance model was more heavily loaded than

the small-scale system configuration, thus reducing the number and duration

of idle time slots for repair activity.

Active Outboard. The application summary for this test is illustrated

in table 5.5.4-6 and the fault repair times is illustrated in
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Table 5.5.4-4. Experiment 13 - Active Inboard lnternode Link Failure Summary

Link failed connects

Source Destination

FC1 $2

$1 CP1

S2 CP2

$1 OFL

100-Hz ram=mum deadline

margin, % change from

SO-Hz minimum deadline
margin, % change from

nominal nominal

-12.8

25-Hz minimum deadhne

margin, % change from
nominal

0.0 0.0

0.0 -12.8 0.0

0.0 -12.8 0.0

0.0 -12.8 0.0
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Table 5.5.4-5. Experiment 13- Active Inboard internode Link Fault Repair Times

Link failed connects

Source

FCI

Destination

Run 1, % of scaled minor
frame

Run 2, % of scaled minor
frame

$2 1,770 1,770

$1 CPl 1,810 1,810 1,810

L

S2 CP2 1,810 1,770 1,800

$1 OFL 1,770 1,770 1,770

Run 3, % of scaled minor
frame

i

1,770
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Table 5.5.4-6. Experiment 13 - Active Outboard Link Failure Summary

Link failed connects lO0-Hz minimum deadline
margin, % change from

50-Hz minimum deadline

margin, % change from
Source Destination nomtnal nominal

FC1 $2 00 -1 4 0.0

S 1 C? 1 -0 1 0.0 0.0

$2 CP2 0.0 0.0 0.0

$1 OFL 0.0 0.0 0.0

25-Hz minimum deadline

margin, % change from
nominal
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table 5.5.4-7. This fault is repaired with a one shot repair algorithm;

consequently the data are very similar to the passive link failure case.

Based on experience with the performance model I/O network repair

algorithms, this fault was expected to require the regrow algorithm.

However, a subtle modification to the one shot repair algorithm on which

the performance model was based provided the one shot repair algorithm with

the capability of repairing this fault. However, the modification slightly

extends the repair activity for passive link failures.

Nodes. For the node failures, all connecting links were routed through

the fault insertion panel. The simulation host computer simultaneously

activated all the fault channels at the fault insertion time.

Passive Inboard and Outboard Ports. The application summary depicted

in table 5.5.4-8 resembles data from the link fault experiment. As with

link failures, the transaction error processing for the chain that

encountered the failure causes a change in the application I/O activity.

The PC1 root node (fig. 5.5.4-1) failure causes communication errors in all

transactions of the 100-Sz chain that encounters the failure. The effect

on the application processing is the same as as that described earlier for

the active inboard llnk failures. The remaining node failure effect on the

application is the same as described in the passive llnk faults section.

The observed repair sequence for this experiment followed the sequence

described in the overview section until network repair was complete. In

this experiment, a communication error was indicated for transactions

associated wlth the DIU connected to the failed node for several frames

after the network was returned to service. The indications persisted for

several frames and then disappeared. What is significant in this

experiment is that the IlO FDIR did not take the I/0 network out of service

and attempt a repair although it reported these errors to the application

processes.

This benign reaction appears to be one of the strategies in the IOSS

for dealing with the loss of communication with a DIU. The I/O FDIR

recognized that communications with the DIU connected to the failed node

were impossible and discontinued sending transactions to that DIU. This

strategy for dealing with lost DIUs will be contrasted against an

unacceptable strategy in the succeeding test discussion.
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Table 5.5.4-7. Experiment 13- Outboard Active Internode Link Fault Repair Times

Lank failed connects

Source

FC1

Destinataon
ii

$2

Run 1, % of scaled minor
frame

Run 2, % of scaled rmnor
frame

441

Run 3, % of scaled minor
frame

441 44.1

$1 CP1 400 400 400

S2 CP2 400 400 400

S1 OFL 317 317 317
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Table 5.5.4-8. Experiment 13 - Passive Inboard and Outboard Node Failure Summary

Node failed

FC1

S2

CP1

CP2

OFL

IO0-Hz minimum deadline

margin, % change
from nominal

0.0

+0.1

0.0

0.0

+0.1

50-HZ mlnfmum deadline

margin, % change
from nominal

-12.8

-1.5

0.0

0.0

0,0

25-Hz min_mum deadline

margin, % change
from nominal

0.0

0.0

0,0

0.0

0.0
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The fault repair times for this test are illustrated in table 5.5.4-9.

The repair time differences are probably attributable to the processing

differences in the repair algorithms for reconnecting lost branches of the

network.

Active Outboard Ports. In this experiment an active signal was

inserted on all links in a direction outbound with respect to the node.

The repair strategy for this failure is to fast regrow the I/O network.

The repair action removes the active node failure from the network, but the

repair logic does not account for the DIU connected to the failed node.

When service is restored on the repaired network and the application

attempts to communicate.with the unreachable DIU, a communication error

results. The communication error causes the I/O network to be taken out of

service again and activates the I/O FDIR. However, the I/O FDIR finds no

errors (taking into account the known failed node). Its response is to

increment a count against the transaction that caused the communication

error and return the I/O network to service.

The out-of-service, return-to-service nuisance trip sequence continues

until the transaction bypass limit is reached for the offending

transaction. This sequence is repeated for each transaction that

communicates with the DIU associated with the failed node. This policy

extends the vulnerability of the application by prolonging the time it must

operate with partial I/0 network data from a single failure. This repair

strategy, which results in a sequence of transient failures immediately

following a repair action, is undesirable.

Transaction bypass is the mechanism intended to prevent the I/O network

from repeatedly taking the I/O network out of service and returning it to

service when communication to a DIU is lost as a result of a DIU link

failure. The application designer specifies an error limit when the

transaction is created at initialization. When the transaction reaches the

specified limit, the I/O FDIR discontinues error processing for the

affected transactions. Subsequent errors logged against the bypassed

transaction do not result in the network being taken out of service.

Transaction bypass also causes the transmission of old data, which is

discussed in the "Passive DIU Link Failure" section.
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Table 5.5.4-9. Experiment 13 - Passive Inboard and Outboard Node Failure Fault Repair Times

Node failed

FC1

Run 1, % of scaled
minor frame

Run 2, % of scaled
minor frame

717 717

$2 675 675 607

CP1 634 634 634

CP2 572 572 572

OFL 517 517 517"

Run 3 not used, data from run 4

Run 3, % of scaled
minor frame

i

7i7
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The application summary for this test is illustrated in table 5.5.4-10.

This fault affects network operation in the same manner as the inboard

active llnk failure. However, examination of the test results demonstrate

that failure of nodes S2, CPI, and CP2 (fig. 5.5.4-1) additionally affect

the 25-Hz rate because of the nuisance trips induced by the repair of the

failed node.

The fault summary for this experiment is illustrated in table 5.5.4-11.

This table is divided into two sections: (1) fault repair time, which is

the time between the IOSS discovering the error and the IOSS returning the

network to service after the regrow repair action, and (2) nuisance trip

time, which is additional time that the network was undergoing nuisance

trips as a result of not being able to communicate with the affected DIUs.

Root Links.

Passive Inboard and Outboard t and Active Inboard. These failures are

presented together as their effect on the system is the same. The

application summary for the both failures is illustrated in table 5.5.4-12.

These failures have the same effect on the system as described for active

inboard llnk failures.

The fault repair times for both failures are illustrated in

table 5.5.4-13. The observed repair action for the channel B connection to

node FC1 is to switch to another root link. As expected, there is no

repair action taken for the channel C to node FC3 root link because it had

no impact on system operation.

Active Outboard. The application summary for this test is illustrated

in table 5.5.4-14. The 50-Hz minimum deadline margin is affected for both

configurations. This is due to the transaction error processing for the

100-Hz chain, which extends the lO0-Hz processing, thereby delaying the

start of the 50-Hz processing. This effect was described for the repair of

active inboard internode link failures.

The fault repair times for this experiment are illustrated in

table 5.5.4-15. The repair action for the link that connects channel A to

FC1 is to attempt to regrow the network through channel A. When this

fails, the network is successfully regrown from channel B. The repair

action for the link that connects channel B to FC3 is to regrow the network

from channel A.
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Table 5.5.4-10. Experiment 13 - Active Outboard Node Failure Summary

Node failed

FC1

100-Hz minimum deadline

_nargin, % change from nominal

50-Hz ram=mum deadline

margin, % change from nomina(

2S-HZ ram=mum deadhne

r_argm, % change from nominal

0.0 - 12 8 0.0

$2 + O. 1 - 12 8 -0.4
L

CP1 0.0 -128 -0.5

CP2 0.0 -12.8 -0.4

OFL +0.1 -12.8 0.0
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Table 5.5.4-1 1. Experiment 13 - Active Outboard Node Failure Fault Summary

Repair tPmes Vulnerability caused by nuJsance tnps

Node failed

i

FC1

Run I, % of

scaled m_nor

frame

Run 2, % of

scaled rn_nor

frame

i

2,0102,010

S2 1,900 1,900 1,900

CP 1 1,900 1,900 1,900

Run 3, % of

scaled minor

frame

i

2.010

Run 1, % of

scaled m_nor

frame

Run 2, % of

scaled minor

frame

Run 3, % of

scaled minor

frame

0 0 0

655 655 65S

t ,428 1,428 1,428

CP2 1,910 1.910 1,910 407 407 407

OFL 1,910 1.910 1,910 76 76 76
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Table 5. 5.4-12. Experiment 13- Passive Inboard and Outboard, and Active Inboard Root Link
Failure Summary

Root link failed cOnnec_

Channet

A

Root node

FC1

IO0-Hz minimum deadline

margin, % change from
nominal

50-Hz minimum deadline

margin, % change from
nominal

25-Hz m_nlmum deadline

margin, % change from
nominal

0.0 - 12.8 0.0

B FC3* 0.0 0.0 0.0

No repair action taken
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Table 5.5.4-13. Experiment 13- Passive Inboard and Outboard, and Active Inboard Root Link

Failure Fault Repair Times

Root link fatled connects

Channel

A

Rootnode

FC1

Run 1, % of scaled m_nor
frame

Run 2, % of scaled minor
frame

Run 3, % of scated minor
frame

303 303 303

B FC3*

* NO repair action taken
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Table 5.5.4-14. Experiment 13 -Active Outboard Root Link Failure Summary

• -Hz m*nDmum_ 2S-Hz minimum deadliner .oo.,,ok,a,,.dco.._-';;_-_[,oo-..m,Cl__ _1_,n._c..og.,.omI ...,g,n._Z.,..._e,.om
I ....... margin "70 L;io,,_J,_ 'nnm I I _l,J, .......' rnin'a'l_....... I .,omlnal I ..........

191



Table 5.5.4-15. Experiment 13 - Active Outboard Root Link Fault Repair Time

Root link failed connects

Channel Root node

Run 1, % of scaled minor
frame

Run 2. % of scaled re,nor
frame

Run 3, % of scaled re,nor
frame

A FC1 1,810 1.810 1.810

B FC3 1,730 1,730 1,730
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DIU Links.

Passive Inboard. The lack of a clear boundary between the validated

AIPS building blocks and the application-specific elements causes problems

when defining network strategies for passive DIU link failures. One area

in which this is evident is the boundary between the network nodes and the

DIUs. The current implementation does not include the DIUs within the

validated AIPS boundary. Consequently, the I/O FDIR cannot distinguish

between a transient fault in the I/0 network and a passive DIU link

failure. Transaction bypass (described in the "Active Node Failure"

section) is the mechanism that addresses this issue.

All out/in service sequences observed in this experiment are considered

nuisance trips because the I/O FDIR cannot repair these failures. The time

the application is vulnerable to nuisance trips is illustrated in

table 5.5.4-16.

Also observed in this experiment is the transmission of data for the

bypassed transactions to the network. This is a problem because the IOSS

discontinues updating the transaction buffer, when a transaction is

bypassed, resultinE in old data bein E transmitted. Therefore, transmission

of bypassed transactions to the I/O network results in force fights at the

actuators.

The application summary for this test is illustrated in table 5.5.4-17.

There is a small effect on the 25-Hz rate because of the nuisance trips in

the I/O network as described in the "Active Outboard Root Link Failure"

section.

Active Inboard. The application summary for this test is illustrated

in table 5.5.4-18. This test results in the same behavior that is

described for the active node failure.

The fault repair times and vulnerability times caused by nuisance trips

are illustrated in table 5.5.4-19. The fault repair times are comparable

to repair times of active inboard llnk failures. The repair of these types

of faults is to regrov the netvork, vhlch results in a similar repair time

vhlch is almost independent of the failed element.
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Table 5.5.4-16. Experiment 13 - PassiveInboard DIU Link Failures Nuisance Trip Time

DIU Runl,%ofscaledminorframe Run2,%ofscaledminorframe Run3,%ofscaledmmorframe

52 767 767 767

CP1 1.210 1,210 1,210

CP2 187 187 187

OFL 160 160 160
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Table 5. 5.4-17. Experiment 13 - Passive Inboard DIU Link Failure Summary

OlU
100-Hz minimum deadline

margin, % change from

50-Hz ram,mum deadline

marg,n, % change from

25-Hz minimum deadline

margin, % change from
nominal

$2 -0.4

CP1 0.0 0.0 -0,4

CP2 0.0 0.0 -0.4

OFL + 0.1 0.0 0.0
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Table 5. 5.4-18. Experiment 13- Active Inboard DIU Link Failure Summary

DIU

$2

100-Hz minimum deadline

margin, % change from
nominal

50-Hz minimum deadline

margin, % change from
nominal

25-Hz ram=mum deadhne

margin, % change from
nominal

+0.1 -12.8 -0.4

CP1 O0 -12.8 -0.5

CP2 0.0 -12.8 -0.5

OFL +0.1 -12.8 0.0
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Table 5.5.4-19.

DIU

$2

CP1

CP2

OFL

Experiment 13 - Active Inboard DIU Link Fault Repair Times

Repair t_mes

Run 1. % of Run 2, % of

_caled minor scaled minor

frame frame

1,720 1,720
===..=._._-=---

1,720 1,720

1,730 1.730

1,730 1,730

Run 3, % of

scaled minor

frame

1,720

1.720

1,730

1.730

Vulnerability caused by nuisance tr_ps

Run 1, % of

scaled minor

frame

821

1,607

400

166

Run 2, % of

scaled minor

frame

821

_.._._._,--.--=---,=

1,607

4O0

166

Run 3, % of

scaled minor

frame

821

1,607

400

_._._._._._.,-=-.-.

166
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5.5.5 ExperlmP.nt 14: FTP Faults

S;mmary. This experiment resulted in a violation of a fault

containment region in the FTP. Loss of CP synchronization should result in

the monitor interlock disconnecting the outputs of the channel. However,

when inducing this failure, the monitor interlock supposedly engaged, but

application data was still observed on the network fron failed channel.

The "rogue" channel behavior persisted in the system for longer than one

minor frame. Fortunately, the I0P FDIR detected the channel failure and

terminated application activity in that channel. The reliability analysis

was based on the assumption that all rogue channels would be disconnected

in less than one minor frame.

Overview. This experlment was designed to simulate FTP channel faults.

A special fault injection task caused faulted behavior during the seventh

major application frame (arbitrarily chosen). The faults automatically

injected were (1) loss of CP synchronization, (2) loss of I0P

synchronization, and (3) CP output disagreement. In addition, a channel

power failure was manually inserted.

For all of these faults, timing for the application tasks was monitored

during the fault recovery process. The faults were repeated three times in

each of two channels; one with an active root link and one with an inactive

root link.

The fault repair times reported for this experiment are based on FTP

log data, and therefore only represents an approximation of how long the

fault was in the system. The time is the difference between the fault

insertion time and some indication from the system that the fault has been

removed. The detection of the fault by the CP FDIR was used as an

indication that the fault had been removed from the system. This

indication was used because all faults in this experiment should result in

the disconnection of the faulty channel's outputs, which is the sole

responsibility of the CP FDIR.

Detection of a fault results in extended execution of the FDIR. In the

nominal alignment of processing, the event "begin 100-Hz application

computing" is slightly delayed be the execution of the CP FDIR. When the

CP FDIR detects this failure, the "begin 100-Hz application computing" is
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further delayed and therefore is a suitable indication that the fault has

been removed from the system.

CP Loss of Synchronization. The two versions of the test induced a

loss of synchronization in the CP 10 ms before the FDIR and 35 ms before

the FDIR of minor frame 27 (arbitrarily chosen).

This experiment exposed a serious fault containment error when the FDZR

did not disconnect the outputs of a channel that had lost synchronization

and application transactions were still transmitted by this faulty channel.

A detailed timeline demonstrating this scenario is illustrated in figure

5.5.5-I. The fault is inserted 10 ms before the CP FDIR_ when the CP FDIR

executes, it detects channel B out of synchronization. At this time, the

outputs of channel B should have been disconnected through the monitor

interlock.

At the tlme the fault is inserted in the CP, the IOPs are processing a

50-Hz IlO request. IOP channel B apparently loses synchronization soon

after CP channel B loses synchronization as a result of contention for the

shared bus. The loss of IOP synchronization is suspect in causing channels

A and C to receive corrupted 50-Hz I/O data from channel B. The corrupted

50-Hz IIO data causes channels A and C to perform transaction error

processing for the 50-Hz I/O data from network 2. However, it appears that

channel B received the correct information when it data exchanged the 50-Hz

I/O data. At this time, channel B normally completes the processing of the

50-Hz I/O while channels A and C are performing transaction error

processing.

While channels A and C continue the transaction error processing for

the 50-Hz I/O request, channel B begins execution of the pending 25-Hz I/O

request and transmits to network 2 the 25-Hz chain through the root llnk

that should have been disconnected by the monitor interlock. However, the

observation of corrupted 25-Hz I/O data on network 2 demonstrates that the

disconnection of channel B outputs by the CP FDIR was ineffective.

Channels A and C complete the 50-Hz transaction error processing and

begin executing the 1OO-Hz I/O request that arrived during the transaction

error processing. In normal operation, the 25-Hz I/O request would have

executed during the idle time consumed by transaction error processing. In
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addition to switching the execution order of the lO0-Bz I/0 request and the

25-Hz I/O request, the lO0-Hz IlO request is delayed when compared to

nominal operation. I/O network 2 returns to normal operation after the

delayed I/O activity completes in minor frame 28.

In our experiment, the loss of synchronization did not affect the

execution of the IOP FDIR in channel B. The IOP FDIR in channel B executes

on time, responds correctly to the disable command from its companion

processor, terminates appllcation-related activity and begins

resynchronization processing.

Similar behavior was encountered when the fault was inserted 35 ms

before the FDIR. The monitor interlock did not disconnect the outputs of

dhannel B when the loss of synchronization was detected. Corrupted 25-Hz

IlO data on network 2 was observed after the CP FDIR detected the loss of

synchronization in channel B.

The different fault insertion time relative to the 50-Hz I/O activity

in the IOP resulted in channels A and C deciding that the chain on network

2 had not completed. Consequently, channels A and C attempted to stop the

IOS in channel B; this action takes significantly less time than the

transaction error processing experience when the loss of synchronization

occurred at 10 ms before the FDIR. The sequence of IlO does not change

from the nominal because channels A and C continue normal processing

earlier in the frame.

Extended FDIR execution associated vlth detecting a channel out of

synchronization was the only observable effect when loss of synchronization

was induced in channel C. The fault processing delays the execution of the

event "begln 100 Hz computing n in the CP, suggesting that the fault was

detected and repaired.

The application summary for this test is illustrated in table 5.5.5-1.

The lO0-Hz deadline margin is affected in all runs, but the greatest impact

vas observed vhen the fault occurred in channel B at 10 ms before the CP

FDIR. The reduced deadline margins for this fault for the 100 Ez and 25 Ez

are a result of the error processing, vhich delays the start of the I/0

activity in minor frame 28 as described above. The impact on the deadline

margin of the scaled application is small. Eovever, this impact is
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Table 5.5.5-1. Experiment 14 - CP Loss of Synchronization Summary

100-Hzmantmumdeadline 50-Hzmlnlmumdeadline 25-Hzm,n,mumdeadline
Channel Fault time, ms before margin, % change from margin, % change from margin, % change from

CP FDIR nominal nominal nomtnal

B 35 -1.1 -O.1 0,0

B 10 -284 -0.1 -20.1

C 35 -39 -0.1 0.0

C 10 -4.0 .0.1 -0.1
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signlficant on an unscaled application and could potentially lead to missed

computing deadlines or I/O updates in the good channels.

The fault repair times for this experiment are illustrated in

table 5.5.5-2. These times are significantly less than the one minor frame

assumed in the reliability modeling of the reference configuration and are

dominated by the fault insertion time relative to FDIR execution. The

repair times for the channel B failures reflect the repair times as if the

monitor interlock had worked as expected.

IOP Loss of Synchronization. Two version of the test were run to cause

a loss of synchronization i0 ms before the FDIR and 35 ms before the FDIR

of minor frame 27 (arbitrarily chosen).

The lack of nonintrusive, detailed data collection in the IOP prevented

observation of the fault detection sequence. It is assumed that the lOP

FDIR detected the loss of synchronization. This assumption was correlated

with messages in the FTP logs.

The application summary for this test Is illustrated in table 5.5.5-3.

In all cases, the CP FDIR delays the "begin I00 Hz computing" in the minor

frame In vhlch the channel is detected out of synchronization. When the

fault is inserted 35 ms before lOP FDIR (which is I0 ms before the CP

FDIR), the CP FDIR detected the channel out of synchronization. This

indicates that the loss of IOP synchronization caused the CPs to lose

synchronization. When the fault was inserted in channel B, network 2 is

taken out of service for this minor frame. From the table, the delay of

the lO0-Hz computing causes less of a deadline margin shift than when the

fault was inserted in channel C.

In the tests where the fault was inserted 10 ms before the IOP FDIR,

the IOP FDIR detects the loss of synchronization failure. When channel B

loses synchronization, taking network 2 out of service reduces the overall

affect on deadline nargln as described above.

The fault repair times for these tests are depicted in table 5.5.5-4.

All the values are less than one minor frame. The differences are

dominated by the fault Insertlon's proximity to the CP FDIR.

Output Disagreement. The second category of faults was output

disagreement. These vere induced using a second strategy involving non-
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Channel

B"

Btt

C

C_t

Table 5.5.5-2. Experiment 14 - CP Lossof Synchronization Fault Repair Times

Fault time, prior to
CP FDIR

Run 1, % of scaled mmor frame

32.8

Run 2, % of scaled minor frame Run 3, % of scaled minor frame

35 33.3 33.3

10 16.0 16.0 16.1

35 33.3 33.3 33.3

10 16.1 16.1 16.1

" Runs 3, 5, and 6

t, Runs 1,3, and4
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Table 5.5.5-3.

Channel

B

8

C

C

!

Fault time, ms before
CP FDIR

3S

10

35

10

lOP Loss of Synchronization Summary

"_-HZ minimum deadline --_-Hz minimum deadline

margin, % change from margin, % change from
nominal nommai

-2.3 -2.0

-0.2 -0.1

-4.3 -2.0

-2.8 -0.1

25-Hz minimum deadline
margin, % change from

nominal

-1.8

0.0

-1.8

0.0
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Table 5.5.5-4. Experiment 14 - lOP Loss of Synchronization Fault Repair Times

Channel

B

Faulttlme, prlorto Run 1,%ofscaledminorframe Run 2,%ofscaledminorframe Run 3.%ofscaledm=norframeIOPFDIR

35 16,2 16.2 16.2

10 99,6 99,6 99.6

35 16.2 16.2 16.3

10 99.6 99.6 99.6

2O6



congruent memory. At the fault insertion time a value is copied into an

application output buffer. This value is incorrect in the "bad" channel.

When the output data is voted, error latches are set in the data exchange

hardware to indicate the data disagreement for the next FDIR cycle.

A The application summary for this experiment is illustrated in

table 5.5.5-5. The minimum deadline margin for the 100-Hz rate is slightly

reduced because of the 100-Hz computing delay when the faulted channel is

disconnected. This is the same effect observed during the other FTP

faults.

For this experiment, the IOSS event logs report a soft data exchange

error in the faulted channel. Faults in channel B resulted in the queue

manager making a request to switch root links. The fault repair times for

this test are depicted in table 5.5.5-6. These times may seem slightly

larger than expected, but are a consequence of the definition of the fault

repair time. For this fault to be detected, the application must write I/0

data into the shared memory, and then the I05$ must transfer the data into

the DPM through the data exchange, which causes error latches to be set.

The I0P FDIR then executes to read the error latches to notify the CP FDIR.

The CP FDIR discovers the output disagreement on its next execution which

completes the fault repair cycle defined for this effort.

Channel Power Loss. A channel power fault was accomplished by the

experimenter turning off power to the channel to be failed approximately

4 sec after the FTP synchronization handshake was observed. As such, the

time of the power failure fault insertion time was only approximate.

The fault effect on the application is depicted in table 5.5.5-7. The

approximate fault repair times for this test are depicted in table 5.5.5-8.

Because faults were inserted manually for these tests, the first indication

of abnormal system behavior is used to approximate the fault insertion

time. Channel B repair times are based on entries in the IOSS error logs

that indicate problems with I/O activity on network 2 and an indication in

the network 2 I/0 dat& of fault repair (interruption followed by

resumption). No such secondary indication was available to determine the

fault repair times with any accuracy for channel C.
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Table 5.5.5-5. Experiment 14 - Output Disagreement Summary

Channel

B

C

100-Hz mmmmum deadline
imargm, % change from nominal

SO-Hz minimum deadline
margin, % change from nominal

25-Hz minimum deadline
margin, % change from nominal

-0.2 -0.1 0.0

-2.9 -0.1 0.0
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Channel

B

Table 5.5.5-6. Experiment T4- Output Disagreement Fault Repair Times

Run 1,%ofscaiedm_norframe Run 2,%ofscaledminorframe Run 3,%ofscaledmlnorframe

233 233 233

233 233 233
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Table 5.5.5-7. Experiment 14 - Channel Loss of Power Summary

Node failed

B

lO0-Hz ram=mum deadline

margin. % change
from nommat

50-Hz ram=mum deadline

margm, % change
from nominal

25-Hz minimum deadline

margin, % change
from nominal

-0,2 -0.1 -0.3

-4.1 .1.6 -1,6
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Table 5.5.5-8. Experiment 14 - Channel Power Failure Fault Repair Times
mlflor frame

* Not available
** Runs 1,3,4
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5.5.6 Experiment 15: Transaction Selection

This experiment explored the performance aspects of transaction

selection/deselection for application chains. Transaction selection is

requesting the IOSS to make a currently inactive transaction in a chain

active, that is execute the transaction when the chain is executed next.

Transaction deselection is the opposite. The time to perform the selection

of an inactive transaction and deselection of an active transaction during

one minor frame was determined. While no strategy has been developed for

its use, the performance aspects of this capability will guide its

application.

In this experiment, the fastest application rate task had a special

code that caused a transaction deselect/select action in minor frame 20

(arbitrarily chosen). The deselect/select system calls are processed

before the execution of the subsequent I/O request. The time to complete

transaction selection was observed by a delay in the start I/O request

event time.

The application summary for this experiment is illustrated in

table 5.5.6-1. The reduced minimum deadline margin for the 100-Hz rate is

a result of the transaction selection and deselection processing. The

processing appears to occur in the IOP on the next execution of the I/O

request after the selection and deselection. The time taken to

deselect/select one pair of transactions is 9.2Z of a scaled 100-Hz frame.

This value will probably prohibit transaction deselectlon/selection from

being used in a strategy that would require high-frequency

selectionldeselectlon of a large number of transactions.

5.6 SMAM,-SCALE SYSTEM OBSERVATIONS

Integration and testing of the small-scale system proceeded in three

phases. The problems that were encountered in all phases of the

development are to be expected in prototype, experimental, and proof-of-

concept system development projects. There are two major concerns when

integrating an application system. The first problem is getting anything

to run. It was remarkable how quickly the application was integrated into

the complex, fault-tolerant AIPS small-scale system. This is partly
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Deselected

,i

fFL

Table 5.5.6-1. Experiment 15- Transaction Deselection/Selection Summary

100-Mzmlntmumdeadline 5(_-Hzminimumdeadiine 25-Hzmlnimumdeadline

Selected margin. % change from margin. % change from margin, % change from
nominal nominal nom,nal

i i i

IFX -92 0.0 + O. 1
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because of the AIPS design concept of providing a simplex application

programming model. The problems discussed in this section deal with the

second, more difficult concern---validating the overall application system.

Design, production, and checkout of DIU simulators and experiment

control equipment were accomplished at Boeing Advanced Systems in Seattle,

Nashington. An AIPS I/O network node was used to test the DIU simulator

interface to the AIPS I/O network. Application Ada software was written

and compiled to ensure correct syntax. Facilities were not available to

test the logical correctness of application software before integration

with the AIPS FTP at CSDL.

Integration of the DIU simulators, experiment control equipment, and

Ada application software with the AIPS FTP and complete AIPS I/O networks

took place at CSDL in Cambridge, Massachusetts. The bulk of hardware and

software debugging and the majority of problems were discovered during this

phase of the project. Ada application software development was completed

and AIPS application environment characterization data were collected. The

characterization data were used to complete the planning of experiments to

be conducted at NASA Langley.

Experimentation with the small-scale system occurred at NASA Langley

facilities in Hampton, Virginia. A few final bugs were corrected and the

planned experiments were conducted. Preliminary analysis of data collected

at NASA Langley was used to direct the experimentation effort.

The greatest hindrances to the development of the application software

and its integration with AIPS software were 1) the lack of detailed

specifications for the AIPS services software/application software

interface; 2) the lack of a user's guide for the AIPS hardware and software

configuration; 3) AIPS software problems uncovered as a result of

attempting to run application software and I/O activity.

In addition, the lack of detailed, complete, and accurate hardware

specifications for the AIPS I/O network made the design of the DIU

simulator difficult and ultimately resulted in a major design error

requiring correction during the second phase of the project.

Application of the IAPSA design methodology was hindered by incomplete

performance and characterization data; system software performance data
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were lacking before the DENET simulation effort, making accurate prediction

of application software performance impossible.

The intent of the small-scale system effort was to test some of the

critical characteristics of the .IAPSA architecture as implemented using

AIPS fault-tolerant system building blocks. The performance of the

prototype hardware was such that the IAPSA configuration application

software could not be run in real-time on the proof-of-concept AIPS and the

goal of testing critical features with a workload simulating real-time

demands could not be met. Rather than abandon testing altogether, "slow-

time" testing was used to focus on intersystem and application/system

functional interactions.

Several unexpected examples pointed out the fallacy of using "industry

experience" and "time in the field" as a means validating the correctness

of software and hardware: I) some code generated by the Ada compiler was

incorrect, causing the AIP$ to crash; 2) previously undetected problems

with an HDLC interface chip that had been in wide use in industry for

almost 2 years nearly prevented the successful implementation of .the DIU

simulator hardware.

Nonintrusive monitoring of small-scale system performance was

difficult. The design philosophy behind AIPS was that each of the elements

would be characterized sufficiently to preclude the need for detailed

system performance monitoring capabilities. Testing experience revealed

that a very important consideration in any embedded system must be "design

for non-lntrusive testability" from an application point of view. There

were system-applicatlon interactions that could only have been studied by

making significant alterations to both application and system software only

for the purpose of monitoring their operation. In an actual embedded

application this would not be acceptable, as any modifications to a system,

no matter how seemingly insignificant or subtle, can greatly alter its

operation.

Observations derived from significant experiences with the small-scale

system are summarized below.
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As manyprojects have been discovered since the advent of Ada, the use

of a validated Ada compiler does not guarantee that the code generator will

be correct for a given target processor.

Application code was compiled using a derived Ada compiler. Several

problems were encountered that related to compiler code generation and the

lack of documentation regarding the compiler implementation. A later

version of the Ada compiler has been released that may correct the problems

encountered.

The immaturity of Ada as a language/operating environment for embedded

systems, the level of development of the AIPS services, and unfamiliarity

vlth the actual AIPS details contributed to the problems. Accurate and

current AIPS documentation was unavailable to aid in application software

development and integration.

Code Generation Problem 1. Code generated by the compiler caused the

68010 CPU to attempt to access a word size variable on an odd byte

boundary, causing the AIPS FTP to crash. The problem was debugged by

single-stepping through the program using disassembled Ada code as a guide.

When the cause of the problem was discovered, a patch was created to

allocate an even number of bytes for the variable. This patch was required

for each unique application program written. No attempt was made to

correct the problem at the Ada source level.

Code Generation Problem 2. The compiler-generated code incorrectly

performed aggregate assignments in a nested variant record. The problem

was corrected by using an intermediate variable to assign values to the

inner variant record.

Code Generation Problem 3. bda representation clauses were used to

control the size of components in a record. The compiler allocated extra

storage for some of the components. The use of the "size M attribute to

pass the size of the components to a procedure resulted in a value other

than that specified in the representation clause. The problem was resolved

by "hard-codlng w the size of each of the components in the procedure calls.

Ada IJaplementatlon Ambiguity. Global variables, which are initialized

in their declarations, are initialized only when the program image is
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loaded into memory for the Ada compiler/linker options used. Subsequent

restarts of the program without reloadlng the program image causes the

global variables to have unknown values. (Local variables in functions and

procedures are initialized each rime the function or procedure Is called.)

The problem was solved by removing global variable initializations from

their declarations and explicitly assigning values to them using code that

executed during elaboration.

An alternative linking procedure was understood to be available, which

solves this problem by specifying that the code is to be ROM-resident. No

attempt was made to use this procedure as it required more time to set up

than was available.

The use of a high-level language Such as kda does not eliminate the

need for high-level debugging aids. The complexity of the target code

generated by the &da compiler is difficult to debug without access to these

high-level debugging tools.

The majority of debugging was accomplished using "visual debugging"

tools, namely carefully studying the Ada code to determine if a logical

error existed. No tools were available on the FTP that allowed high-level

debugging; all machine level debugging was done at assembly code level. A

resident monitor was present in the FTP that allowed setting breakpoints

and disassembling code.

When Ada exception problems were encountered, it was necessary to set a

break point Just before the exception address and single step up to the

point of the error. _/hen the address of the error was determined, the

program map was used to determine the package in which the error occurred.

The package was disassembled and debugging proceeded using the FTP monitor

program at the assembly code level.

Another method used for debugging was to modify the Ada software to add

calls to a procedure that placed messages in a debugging log. When the

system crashed, the resident monitor program was used to examine the

contents of the logs, tracking the operation of the program in question.

9hen the problem was fixed, the procedure calls were removed and the

program was recompiled and rellnked.
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A slngle-channel FTP high-level Ada debugger would be helpful.

However, some of the problems that arose were a result of cross-channel

voting, data sharing, and so forth, which are inherent to the AIPS

architecture. A high-level debugger exists for this ADA compiler that

requires the development of unique drivers for each hardware environment.

Whether it can be adapted to the AIPS bit-synchronous architecture is not

known. Debugging Ada application code would be greatly enhanced by the

availability of such a tool.

In well-defined Ada embedded system environments, it is possible to

develop and debug a large portion of the code in a higher level

environment, such as on a VAX, where more sophisticated debugging tools are

present, and then recompile the code for the target embedded environment.

Extensions to the Ada operating environment in AIPS make this type of

development very difficult for functions with a strong dependence on the

extensions unless an emulation of the extensions is available in the higher

level environment.

Some means of readily integrating and debugging application code in the

embedded AIPS will still be required. Many of the obstacles encountered

with AIPS were caused by its immaturity. The system services were not

completely debugged and no accurate documentation existed to guide the

application programmer. Without the close cooperation of actual system

programmers at CSDL, it would not have been possible to get the application

to run in the AIPS environment.

Specifications for the AIPS I/0 system did not adequately describe the

I/0 network hardware interface requirements for DIUs.

The HDLC protocol, as used in the /tIPS I/0 system, was not adequately

described in the AIPS documentation. All data being sent through the HDLC

interface chip in the AIPS was inverted on output to the I/O network, while

all IIDLC protocol fields generated within the interface chip itself were

sent in noninverted form. This problem was not discovered until the system

was set up for integration during the second phase of the project at CSDL.

It required major revision to the DIU simulator software.
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"Industry experience w and "time in the fleld u are not sufficient to

Euarantee the correct operation of a device.

Components used in flight critical applications must behave in a

predictable manner. The formal mathematical proof of device correctness is

not yet practical. As an alternative, mature technology devices are often

selected for flight critical applications based on the assumption that all

major problems will have been detected in the accumulated hours of

operation in a wide variety of applications.

The HDLC interface chip used in the DIU simulator hardware had a latent

A design error that caused incorrect operation with certain bit patterns.

The chip had been in general use in similar applications for approximately

2 years.

The manufacturer of the chip had extensively simulated its operation

before its production and release to the industry but had not uncovered

this problem. The simulation for the chip was revised to duplicate the

specific conditions encountered in the DIU simulator and the problem was

verified. A revision to the chip is now in progress, which should correct

this and other previously reported problems.

Simulation is a good technique for verifying device correctness.

However, it must be used in a manner that will maximize the coverage of

potential problems. To guarantee correct operation, a simulation must be

exhaustively applied; this is time consuming and difficult for a

manufacturer to Justify on economic grounds.

User doctmentation and application guidelines for the /kIPS FTP were not

available.

Many of the problems encountered when generating application programs

for the snail-scale systel were a result of the lack of complete

documentation or specifications for the AIPS software and a lack of

experience with AIPS. The system was still under development and problems

were encountered with system services that required revisions to the system

software.
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For AIPS to be a fault-tolerant, building block system suitable for use

in aerospace applications, complete specifications and documentation must

be available and all the components of the system (hardware and software)

must be validated.

The ability to easily and nonintrusively instrument an embedded system

is essential to evaluate its performance and monitor software interactions.

The first experiments run using the small-scale system characterized

the operation of the system in the application configuration and pointed

out difficulties in monitoring system performance.

The design and validation concept for the IAPSA architecture (ref. 5)

assumed that the testability of the IAPSA configuration would rely on AIPS

verification and validation techniques that do not require total system

simulations. However, characterization of AIPS was not complete when

small-scale system integration planning was started. Even with total

characterization of AIPS, the interaction between AIPS software elements

and application programs is so complex that either an easily used,

nonintruslve measurement system or a high-fldelity system simulation are

required to adequately predict application performance.

Implementation of the periodic scheduler in the FI_ points to the need

for complete specification of system features so that the system softvare

designer understands the full implications and intent of a system softvare

requirement.

Use of the FTP periodic scheduler to schedule exact harmonic rate

periodic tasks resulted in nonharmonlc task execution, causing task

execution phasing to drift. Exact harmonic task scheduling is a common

practice in control system design, vhlch guarantees precise control of task

phasing and york load allocation. The facilities for periodic scheduling

were included In the FTP scheduler. However, the need for exact harmonic

operation was overlooked.

22O



6.0 CONCLUSIONS

During the IAPSA II contract, a prevalidation methodology was developed

and applied to the definition of an integrated system for an advanced fighter

aircraft. An integrated flight control/propulsion candidate architecture

concept, based on AIPS fault-tolerant system building blocks, was evaluated

for its ability to meet the demanding performance and reliability

requirements of the flight-critical functions performed by the system. This

preliminary evaluation guided refinements to the architecture design. A set

of experiments was defined for testing critical characteristics of the system

concept using a small-scale system. These characteristics were defined based

on the earlier performance and reliability" model evaluation. This effort,

particularly the application of the prevalidatlon methodology, provided

several interesting lessons described in this section.

A major result was that several weaknesses in the candidate architecture

became apparent through the use of the prevalidation methodology. These

shortcomings were not evident in the initial performance and reliability

screening performed to produce viable candidate alternatives. This is

important because concept weaknesses of this nature are usually not uncovered

until late in the system life cycle, for example at hardware and software

integration time. The IAPSA II effort shows unequivocally that it is

extremely important to perform a detailed evaluation of the specified concept

in terms of reliability and performance before committing a project to a

hardware and software design. Another IAPSA II study result is that

performance must be investigated at the same time as reliability for a fault-

tolerant system. Capability to support the application performance needs is

a key characteristic that must be proved during early development efforts.

If a system concept is incapable of meeting the performance needs of the

application, its ultrarellablllty characteristics will be of no value.

Some problems encountered during the study effort stemmed from the fact

that the AIPS system development effort paralleled the IAPSA II design and

evaluation effort. That is, the development of the application based on

building blocks suffered from too much concurrency with building-block
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development activities. This was evident at several points in the effort.

For example, the performance simulation results were not available to guide

the refined configuration definition. Also, the schedule for small-scale

system development dictated that the candidate configuration workload be used

because the refined configuration data were not yet finalized. Similarly,

feedback of evaluation results showing strengths and weaknesses of the AIPS-

based candidate system was not available in time to aid the AIPS developers

at CSDL.

6.1 METHODOLOGY

The prevalidation methodology is aimed at the early concept development

phase of system development. The methodology calls for a greater level of

effort early in the design cycle than is typical in current effort. It is

interesting to note that the resulting front-end loaded development effort is

similar to the staffing concepts used by Japanese companies in their product

development efforts.

Some methodology elements needed during a full development cycle are

shown in table 6.1-1. Note that only a few of these elements were directly

exercised during the IAPSA II effort. Further tool and method development is

needed to address system design aspects that are less critical from a safety

standpoint but vitally important to system affordability and supportability.

For example, effective tools and methods for the evaluation of cost,

maintainability, and so forth are needed.

Our experience indicates that a hierarchy of requirements and

specifications with traceability between levels should be developed for each

design to get maximum benefits from the methodology. The performance

parameters from models that demonstrate achievement of higher level

requirements should be used to provide performance specifications for the

lover level elements. Additionally, implicit design assumptions or

evaluation assumptions that are exposed during the model development must be

expressed in the lower level specifications. Parameters critical to the

success of the design and important assumptions must be tested in the build,

integrate, and test phases of the development.
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TABLE 6.1-I. METHODOLOGYELEMENTS FOR TOTAL DEVELOPI/ENT CYCLE

Requirements Specification Traceability

Design Guidelines

Building Blocks

Design Concept Analysis

Reliability

Performance

Cost

Availability

Survivability

Maintainability

Validation

Design for Validation

Testing Methods"

Rare Failure Modes

Redundancy Management Performance

Proof of Correctness

Laboratory Testing

Flight Testing
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6.1.1 System Evaluatlon Tools

Our experience with the evaluation tools was instructive. The majority

of the analysis effort was spent either defining how the system works or

performing failure or timing analysis prior to system modeling. The actual

time spent using the tools to execute the models was a very small part of the

total analysis effort. The level of detail required in the high-level

performance and reliability models to evaluate the important attributes of a

flight-critical system is currently an art. Furthermore, the overall time

required to evaluate a system concept is currently too long. The

prevalldation methodology will be most effective when a large number of

alternatives can be evaluated in a relatively limited time period to produce

a nearly optimal design. Clearly, more practical and efficient analysis

techniques with supporting tools must be developed to reach this goal.

Clear and concise documentation is needed to support the prevalidation

methodology. Definition data for system building blocks or components are

needed to construct the evaluation models. Descriptions of the alternative

architecture concepts, including important design and evaluation assumptions,

are needed to distinguish between key design alternatives. The effort called

for in the prevalldation methodology is slowed down excessively when

documentation is lacking.

Performance and reliability issues were seen to be closely interrelated

during this study. This became clear when the susceptibility of the

candidate system to certain transient faults was studied. The transient

study showed that detailed modeling could point out the benefits of certain

redundancy management strategies in the face of specific transient threats.

The interaction concern was associated with transients, which can cause a

channel to go out of synchronization. With the current AIPS

resynchronlzatlon method and the heavy IAPSA II application workload, this

type of transient has the same effect as a permanent failure. That Is, the

system performance analysis shoved that not enough Idle time was available to

allow channel recovery to take place during application execution.

Another example shoving performance and reliability interaction is

associated vlth the hazard faced when an AIPS I/0 network is taken out of

service for repair after devices on the other network have failed. The
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performance analysis shoved that the heavy application I/O workload precluded

a possible solution strategy of sending sensor and actuator data redundantly

over both networks. Without the discipline enforced by the methodology, the

reliability evaluator might be tempted to assume that the reliability problem

could be handled by redundant bus traffic. Similarly, if reliability wasn't

considered at the same time as the performance analysis, the workload needs

could be understated by ignoring requirements imposed by failure protection

or redundancy aspects. These examples emphasize that if concept problems are

to be uncovered early in the life cycle, both reliability and performance

must be analyzed as In the prevalidation methodology.

6.1.2 Performance Tool

Techniques and tools for system-level performance modeling are relatively

less developed than those for reliability modeling. Much more effort has

been put into the development of the appropriate reliability tools and much

experience has been gained applying them to fllght-critical system concepts

in the last I0 years.

By comparison, the use of a discrete event simulation tool, like DENET,

is new in the analysis of fllght-critical systems. Our conclusion is that

such tools are very promising for determining critical performance

requirements, but additional tool application experience is needed to define

practical and effective system level modeling techniques. On the other hand,

our experience indicates that complex system solution concepts involving

multiple processing sites and intensive I/O activity will possess high

technical risk unless such tools are used to verify that the application

performance needs can be met.

It should be noted that only high-level models of the appropriate

sequencing and control functions were needed to discover the critical

throughput and I/O activity performance problems in the IAPSA II study. This

suggests that the level of early modeling need not extremely detailed as long

as the behavior of the important functions is included. Of course

engineering Judgment is required to decide what is import_nt.

During the performance tool effort, special data collection and data

analysis code were required to obtain adequate visibility into the operation
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of the modeled system. A large portion of the analysis effort was spent

examining and interpreting the output data from the performance simulations.

The amount of experiment data were overwhelming. We relied on summary

statistical data and exceptional event listings to initially screen the

experiment data. However the subsequent detailed analysis was very time

consuming and therefore an area for further development.

One interesting performance modeling observation was that the functions

that presented modeling difficulty also appeared to present implementation

difficulties. It was not always clear whether the difficulties were the

result of complexity or fuzzily defined operating concepts. What seemed

clear to us is that early modeling can provide an early indication of unclear

requirements or an unwieldy design structure leading possibly to an

unvalidatable system.

Additionally, detailed modeling provided insight into operation of the

specified system. Early simulation results provided an indication of

negative consequences of certain design features. For example, evaluation

with a model of the initial I/O request handling process showed that the

heavily loaded portion of the candidate system could not meet several time-

critical deadlines. (Implementation of a high-level model of this process

also proved to be difficult.)

Therefore, the modeled operation of the I/O request process was changed

for the rest of the performance simulation effort. The original model

handled requests from multiple rate groups on a priority basis. The

redefined model implemented a separate task for each I/O request. Each task

handled all the activity needed to perform a single I/O request. Complexity

was limited to a shared semaphore, which was used to enforce exclusive use of

the network during the limited period when messages associated wlth a single

I/O request were being transmitted over the network. Thus, the modeled

operation used the underlying preemptive priority tasking system to provide

limited preemptive priority handling of I/O requests. Unfortunately, results

of this modeling were not available in time to aid the AIPS system developers

at CSDL.
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6.1.3 Reliability Tool

As mentioned earlier, the reliability modeling of fllght-crltieal systems

is relatively advanced compared to performance modeling. The current state

of reliability tools appropriate for highly reliable systems is due in large

part to past research efforts. However, our IAPSA II experience suggests

that methods are still needed for modeling large-scale integrated systems.

Our reliability modeling approach was based on the use of multiple

models, each of which reflected the success of a key system function.

Modeling the dependency of these system functions on the central elements

such as communication devices, electrical, and hydraulic power distribution

was difficult. It was easy to miss the reliability implications of system

interconnection alternatives, especially when the central elements were

interdependent. For example, the dependency on electric power of the AIPS

redundant I/0 network elements and the redundant surface actuation channels

caused subtle problems in the refined configuration mesh network option. A

special power connection scheme was needed to preclude certain two-failure

combinations resulting in a loss of safety.

Modeling approaches, which make these central dependencies more explicit,

generally result in an extremely large system level model. This is

unattractive because of the problems associated with developing and

validating models containing large numbers of states. In fact, most of our

progress in practical modeling methods for large-scale systems has involved

ways to reduce the model size. Unfortunately, many of the techniques used

are ad hoe. More work is needed to develop techniques to formally combine

the separate section aodel results and to ensure that potential interactions

are correctly treated. Additionally, techniques for estimating error caused

by model truncation are needed for approaches llke ours, where a problem is

split into submodels.

Methods for evaluating longer term reliability measures are also needed.

The military emphasizes operational performance capability over time, so

availability- and supportabillty-related measures should play a large role in

the evaluation of candidate architectures. Current tools and techniques take

advantage of relatively small failure rates and short exposure times

associated with highly reliable system safety assessments. It is not clear
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how appropriate these are for availability- and supportability-related

evaluations.

The reliability evaluation experience indicated that a great deal of the

effort was spent performing system failure analysis. For this reason an

expert system approach was explored for the purpose of automating this

effort. This type of system is ultimately intended to aid in the failure

analysis of a candidate system. The tool will use a system description to

produce a reliability model. The current prototype produces a reliability

model in the ASSIST program format.

6.2 ARCHITECTURE

Our overall conclusion is that integrated systems are feasible and in

fact desirable. Such systems allow minimization of the number of sensors and

actuators in the system, support optimum control approaches and make feasible

enhanced supportability features such as function migration, pooled spares

and two-level maintenance.

On the other hand, special care is needed during the design phase to

ensure that there are no undesirable interactions between the formerly

independent functions. All interactions that might take place between

functions during normal operation as well as operation during and after

failures must be well understood and provided for. In short, more formal

system engineering approaches are needed during development to achieve the

benefits of integrated systems.

lIith regard to the specific IAPSA II study architectures, the detailed

analytical evaluation showed that the initial candidate architecture was

unable to meet either the reliability or performance requirements. The

reliability analysis showed that the concept suffered from loss-of-safety-

failure situations and several loss-of-full-mission-capability situations.

Failures not covered (i.e., detected or identified) by the redundancy

management process and potential worst case component failure modes were

critical in this evaluation.

The performance analysis showed that part of the candidate system was

overloaded, and did not possess the needed growth capability. Special

coordination was needed between the time-critical application tasks and the
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time-critical system tasks to allow the heavy application workload to

complete in the allowable time. Possible application-system execution

phasings and alternative organizations of the application workload were

evaluated using the performance simulation. The result was that only the

most efficient organizations could fit into the allowable frame period.

However, even the optimum workload organization had inadequate growth

capability.

Evaluation of the original concept identified weaknesses, which allowed

definition of a concept more capable of meeting the specific requirements.

Reliability evaluation of the refined configuration showed that it met the

necessary safety and mission requirements although this result is dependent

on certain critical parameters and assumptions, for example, the likelihood

of a control surface Jam.

The refined configuration minimum growth factor estimate was about 7OZ.

There appear to be two performance bottlenecks. The first is the speed of

the data exchange hardware. The IAPSA II workload incorporates a large

amount of data, which must be made so.urce-congruent or voted before output.

Because of its intimacy wlth the synchronization function, the data exchange

speed will not improve dramatically with technology insertion, such as faster

processor and memory components. The second concern is that the IC network

operation was never modeled. Although the traffic is substantially lower

than I/O traffic it has unique characteristics, which will impose further

critical timing demands on the already heavily loaded IOP.

6.2.1 AIPS Building Blocks

An early IAPSA II design decision was to base the design on the AIPS

fault-tolerant building-block system. This decision was made to benefit from

certain fault tolerance concepts that formed the basis of the AIPS design.

These included transparent and efficient handling of information and voting

exchanges, inherently effective failure detection capability, and protection

against Byzantine or malicious faults.

In general, our conclusion was that the AIPS concept was very innovative,

incorporating advanced fault tolerance concepts and providing a unique

application environment in which the failure protection for the core system
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elements is completely transparent to the application softvare. AIPS

supports distributed computation and, common system hardvare and softvare,

and alloys systems containing elements vith mixed-redundancy levels. Because

the use of building blocks is nev, it is not unexpected that system

development vith them should have unique characteristics. Our observations

in this regard follov.

First, it should be noted that the developer of a fault-tolerant

building-block system has some unique constraints. The fault-tolerant system

developer has a limited number of potential users compared to the developer

of general purpose digital systems or devices. Furthermore, each of the

specific high-reliability applications has its ovn unique set of high-level

performance and reliability requirements. Thus the building-block system

must be configurable so as to satisfy a vide range of requirements. The

system developer must consider all aspects of use of the system by the

application. Instead of one demanding user, he must satisfy several vith

sometimes conflicting needs. Features that appear inadequate to some users

may be too much for Other users.

Next, vith a mature system, the application system design team vould

start vith an application users' guide that defines the building-block

elements. Application guidelines vould be provided to guide the use of the

building-block elements in the application system. Finally, Hprevalidated"

hardvare and softvare building-block elements vould be available. The

validation aspects o£ design vith mature building blocks are the most

significant to the application design team.

The KIPS developers' validation approach takes advantage of these

prevalldated buildlng blocks. The major benefit to the application is the

reduction in the amount of validation effort needed to certify or qualify the

application system. The traditional verification and validation effort vould

be dramatlcally reduced vlth a system based on KIPS building blocks compared

to a custom system design.

The key to this reduction is the prevalidatlon effort performed by the

buildlng block developers. Thls effort consists of tvo major thrusts:

(1) design verification, vhlch shovs that each building block element follovs

the KIPS specifications, and (2) development of a set of design guidelines,
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which implies certain AIPS attributes if followed by the application design

team. Because of the parallel IAPSA II/AIPS development, the first major

difference between Boeing's effort and the ideal use of building blocks is

that this prevalidatlon effort had not been completed.

We have concluded from our experience that the application design team

will have special needs when validating a system based on building block

elements. In the final development phases the application must be tested in

a closed-loop manner representative of operation in the flight environment.

Visibility into the internal workings of the building-block elements is

needed during this testing to verify critical application behavior. This

means that internal variables or signals must be available for testing

purposes. To complicate matters, these must be obtained on a non-

interference basis to preserve the validation integrity. Because the testing

needs of potential building block applications may differ, testability

features must be able to satisfy a broad range of users.

The visibility needs nan be very detailed. In general all design

characteristics that might affect operation of the application functions must

be understood by the application design team. In short, the building-block

developer must provide certain building-block-implementation details to the

application designer. For example, mission-eritlcal system experience has

shown that source code is often needed for the key vendor-provided operating

system or executive functions. This is not because of a need to modify the

code but to provide the necessary understanding of how the key functions

work. This experience may be exaggerated because of poor or missing

docuaentatlon, but it demonstrates how much detail the application team needs

about implementation of functions crucial to system performance.

In addition to details of key system functions, the application design

team will need data from the design verification effort carried out during

the building-block prevaltdation effort. This information is needed for two

purposes: (1) to document the validation basis of the integrated system for

the certifying or qualifying authority, and (2) to indicate if and where

application-specific validation efforts viii be required.

One side effect of the use of fault-tolerant blocks and the application

of a prevalidation methodology may be a different relationship between the



system contractor and the subsystem vendor(s). The building block vendor(s)

will need to develop a functional specification that includes detailed

reliability and performance attributes. The attributes should be quite

detailed because experience has shown that subtleties of the building-block

interrelationships are important. Two phases of interaction with vendors may

be needed during acquisition. The first phase would occur during building-

block definition to provide information to the vendor about potential

application system detailed requirements. The second phase would be during

the hardware/software bid when detailed building block characteristic data

would be provided to the system contractor for use in evaluation modeling.

6.2.2 Concepts lk-edingAttention

The AIPS development program was directed toward the production of a

proof-of-concept system. The original system requirements were derived from

a survey of application needs for a variety of aerospace vehicles.

Unfortunately, application needs were given less emphasis in the subsequent

austere development program.

The AIPS system operation underwent some changes during the IAPSA II

effort, which is to be expected. (Unfortunately, CSDL was unable to document

these in time to support the IAPSA effort.) Many changes appeared to be

required for either implementation feasibility reasons or real-time

performance reasons. When changes occur, side effects on the application

interface are common unless it is carefully controlled. One way to preclude

this is to formally define an application interface concept early in the

hardware and software development. This interface is specified by an

interface control document.

Sensor redundancy management provides an example of application interface

needs. In the KIPS, sensor redundancy management is an application function,

while communications is a system services function. The responsible

application voting processes can take advantage of the knowledge that data is

not available because of communication errors. In some cases, noise may

cause data from certain transactions to be unreliable or unavailable for just

one application cycle. The redundancy management process must operate in a
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special mode during this period. After some communication element failures

the system services software changes the status of the application-requested

I/O traffic because the devices are no longer reachable. This is clearly

worthy of a special indication to the application. For some functions, such

as IAPSA II flutter control, a significant change in operational mode is

necessary when communication with a certain number of sensors is permanently

lost. Therefore the application has a definite need to obtain a variety of

communication error data.

In retrospect, it is clear that any building-block effort would benefit

from an application forum in which widely varying operational needs of the

application could be discussed with the system specifiers or implementors.

An inhouse application advocate might serve this purpose. From the building-

block perspective, IAPSA II represented only one of many possible sets of

requirements that the application interface concept should be designed to

handle.

Some system specification capabilities originally called out for the

candidate architecture vere not included in the proof-of-concept development.

For example, an early AIPS decision was to defer development of the system

manager and I/O system software capability needed to support function

migration until later in the development cycle. Because function migration

has such demanding timing requirements when application needs are considered,

we decided not to incorporate it in the candidate design until it could be

demonstrated. Thus function migration capability, its associated validation

issues, and its potential applications (safety enhancement, mission dispatch

enhancement) were not explored in this study.

Other capabilities appearing in early functional requirements were

apparently excluded because of hardware, software, or resource difficulties.

In such cases, it is important for the implementors to know how the

requirement affects the high-level operational capabilities. If the system

services software was specified in a manner that allowed traceability of

required software performance characteristics to the supported system level

operations or functions, the importance of the low-level functions would be

clear. With a rigidly defined and enforced requirement and specification
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hierarchy, implementors will always be aware that certain system level

principles could be affected by the implementation of a low-level function.

Because there was no formal connection to operational aspects, the

implementation of some features prevented their use because certain implicit

timin E needs could not be met. For example, the periodic I/0 activity

scheduling capability was not usable because harmonically related application

execution rates were not achievable. The application rate groups would drift

in and out of phase during operation causing periodic overloads. Similarly,

the current capability to automatically resynchronize a channel is unusable

with the IAPSA II workload.

The functionality allocated to the AIPS building-block software in the

system specification" was very extensive. Because of the" fundamental

importance of the system services software, as much, if not more emphasis

should have been placed on the development of key software functions as on

the development of critical hardware functions. Rapid prototyping techniques

might have been used to address key feasibility and performance questions.

Modeling techniques, such as those called for in the prevalidation

methodology, could be used to identify the critical modules, functions or

operations associated with the design.

The magnitude of a software validation and verification effort is a

function of the criticality of the implemented function and the complexity of

the design. Validation of complex software, especially that involving

nondetermlnlstlc behavior, is extremely challenglnE and costly. For this

reason previous critical software efforts have emphasized reduction of the

size and complexity of the critical programs. By comparison the current

system services is large and complex. Recall, that the refined configuration

study, shoved that a set of redundant buses provided nearly the same

reliability measures as the reconflgurable I/0 mesh networks. The non-

reconflgurable buses do not require the complex system software associated

vlth the uuumgement of the reconflgurable mesh I/O networks. A direct

approach to reducing the cost of the validation effort would then be to

eliminate the I/O mesh network option from further consideration. This

decision could be reviewed after function migration capability is

incorporated in the system services and demonstrated.
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The AIPS system specification contained overall performance goals. Early

in the IAPSA II design effort, performance calculations based on the original

AIPS performance goals were used to select viable candidate architectures.

Calculations for the selected candidate indicated that, while acceptable,

throughput might be close to the 100% growth factor constraint in part of the

system. Similarly, the early evaluation of heavy I/O workload focused on the

satisfactory ability of the bus to handle the transmitted I/O messages.

Later, however, our more detailed simulation models showed that, even with

operating speeds near the hardware limits, the system could not meet the

growth requirements in either throughput or I/O activity. This points out

that performance goals are only meaningful if they are used to derive

performance requirements for the system elements. If the performance

characteristics of the system components are carefully controlled via

performance specifications, then achievement of system goals can be

guaranteed.

It iS clear that the KIPS performance goals were not used to derive lower

level performance requirements. There are several reasons for the

traditional reluctance to specify firm performance requirements early in the

design cycle. First, there are usually design feasibility concerns until

prototype hardware and software can be developed. Certain component

performance levels may not be achievable without excessive development effort

and expense. In software, certain critical sections commonly dominate

performance. Software performance improvement efforts usually proceed only

after these critical sections are identified through prototype efforts.

Additionally, there are natural concerns about overspecification. An

overall performance requirement is often known but several satisfactory

design alternatives may exist, each with different component performance

allocations. One alternative might result in a more expensive system because

of the difficulty in meeting the requirement levied on one or more

components. An alternative that relaxes the requirement on that component

while stressing others might be cheaper. It should be noted that the

prevalidatton methodology addresses this concern by promoting the evaluation

of alternative designs with different component performance allocations.

Early modeling can quantify the level of performance needed by each component
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in each alternative configuration, which satisfies the overall system

requirements.

In conclusion, during the 4 years of the contract, five technical papers

were presented to various organizations (IEEE, AIAA, AGARD) on the IAPSA II

results. Additionally, a patent is pending on a reliability model generator

that produces reliability models from block diagrams of an architecture. The

major benefits to industry from the execution of this contract will be the

prevalidation methodology and supporting tools_ advanced vehicle management

systems (VMS) founded on the results obtained evaluating the integrated

flight/propulsion control system architecture, which is based on CSDL's AIPS;

and the NASA concept of "design for validation." The contract has redirected

IR&D activities within The Boeing Company. Because of the problems

associated with some major aircraft activities within the industry, Boeing

management has become aware of the need for a systems approach for both

"flight controls and avionics technology. The IAPSA II prevalidation

methodology attempts to satisfy these deficiencies.
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